Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Study could impact noninvasive treatment of cancer tumors

Abstract:
LSU researchers investigate the effects of nanoparticles on cell freezing

Study could impact noninvasive treatment of cancer tumors

BATON ROUGE, LA | Posted on June 14th, 2007

Ram Devireddy, assistant professor of mechanical engineering at LSU, recently co-authored an article with Todd Monroe, assistant professor of biological and agricultural engineering, investigating the complex effects of nanoparticles on cell freezing. The report was published in the prestigious journal Nanotechnology.

The results of their study - while not what they expected - could end up impacting cancer treatment. Devireddy and Monroe initiated a study to investigate the effects of gold-based nanoparticles, or microscopic particles equal to one-thousandth the thickness of a single strand of human hair, on cell transport and the response of those cells after being frozen. Their hypothesis: nanoparticles would alleviate the damaging effects generally caused by the freezing process.

"Most cells are like bags of water," Devireddy said. "Ice crystals have sharp edges that tend to poke the cells and break them up, causing damage. That is why, for example, frozen food, when thawed and cooked, tends to be ‘mushier' that fresh produce."

The researchers, along with graduate students Sreedhar Thirumala and Julianne Audiffred, used the nanoparticles to replace dimethylsulfoxide, a commonly used cryoprotective agent.

"Cryoprotective agents, or CPAs, have long been used to alleviate freezing injury and to enhance the number of cells that survive the freezing process," said Thirumala. The drawback is that CPAs can also cause cell death when used in high concentrations and need to be removed from cells immediately after freezing.

Devireddy and Monroe believed that nanoparticles might act as a benign replacement for CPAs. To test this, they added commercially available gold nanoparticles to cells suspended in a culture medium.

However, contrary to their initial hypothesis, Devireddy and Monroe found that the nanoparticles did not significantly change the freezing response of either HeLa cells, which are derived from a specific cervical cancer cell line, or Jurkat cells, cancer cells commonly used in research due to their abnormally rapid growth rate in lab conditions.

While test results showed that the nanoparticles were not as effective in protecting frozen cells as the more traditional CPAs, there was significant damaging interaction between the nanoparticles and both HeLa and Jurkat cells, suggesting the need for more research.

Potential practical applications for such research includes improved cryosurgical procedures, which are non-invasive procedures used to eradicate cancer tumors inside the body by cooling them to extremely low temperatures.

Both Devireddy and Monroe plan to pursue this project, citing their teamwork as a driving factor in the effectiveness of their research and teaching.

"The benefit of having each other to ‘cross-train' our students also better prepares them for future careers in bioengineering research," said Monroe.

####

About Louisiana State University
Each year, LSU conducts more than 2,500 sponsored research projects funded by more than $140 million in external grants from the National Science Foundation, National Institutes of Health, NASA, National Endowment for the Humanities, and many others. Within those projects is work that may one day cure diseases, unearth artifacts and species of animals thought never to exist, save lives in the face of a natural disaster or expand the perception of the world’s great writers and artists.

For more information, please click here

Contacts:
Ram Devireddy

225-578-5891

Ashley Berthelot
LSU Media Relations
225-578-3870

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Design of micro and nanoparticles to improve treatments for Alzheimers and Parkinsons: At the Faculty of Pharmacy of the UPV/EHU-University of the Basque Country encapsulation techniques are being developed to deliver correctly and effectively certain drugs October 20th, 2014

Non-Toxic Nanocatalysts Open New Window for Significant Decrease in Reaction Process October 19th, 2014

European Commission opens the gate towards the implementation of Nanomedicine Translation Hub October 16th, 2014

Discoveries

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Announcements

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE