Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Silterra and IMEC to continue joint technology development project

Silterra Malaysia, a leading foundry in Malaysia and IMEC, Europe's leading independent nanoelectronics and nanotechnology research center based in Belgium, today announced that they have signed an agreement for a joint development project (JDP) to create a foundry-compatible 90-nm CMOS process technology with intention to further scale to 65-nm. A 110-nm derivative will also be developed in parallel. This collaborative project is an extension of the JDP conducted earlier for the 0.13-micron (130-nm) technology and which is already in production at Silterra.

Silterra and IMEC to continue joint technology development project

Kulim, Malaysia and Leuven, Belgium | Posted on June 14th, 2007

The technology will be ready for production in the second half of 2008 or earlier and will, among other things, utilize low-K inter-metal dielectric and the 193-nm patterning process. The smaller geometries will allow for smaller die sizes and faster transistors, bringing a better price-performance profile to Silterra's customers. A team of Silterra and IMEC engineers will fine-tune the base-IMEC process at IMEC's research facility in Leuven to meet the specifications defined by Silterra. The process will have physical design rules and electrical characteristics that match mainstream technologies, enabling customers to seamlessly support their multi-foundry sourcing strategy.

"Silterra is committed to the pure foundry business and more advanced process technology development is essential to support the success of our customers. Many of our major customers adopted the multi-foundry strategy and we will continue to grow with them. This project paves the way towards future technology nodes and a migration path to 300mm," said Kah-Yee Eg, CEO of Silterra. "As proven in our earlier engagement with IMEC, this JDP will enable Silterra to bring a new process into production quickly."

"We are very pleased that we will continue the successful collaboration with Silterra to develop a foundry process that will benefit such a wide customer base," stated Prof. Gilbert Declerck, president and CEO of IMEC. "Our 90-nm platform technology is a great starting point to build on because it is proven and will help shorten development cycle times significantly."

The new process, like Silterra's own foundry compatible 0.13- and 0.18-micron logic technologies, is targeted for a wide range of products for consumer, communications and computational applications. In addition, the technology is also optimized for CPU, DSP and graphics applications. This jointly developed foundry process opens the door for Silterra to collaborate with other foundry players in rapidly bringing advanced node densities to production.

"We see significant business growth in the next 2-3 years and will continue to actively invest in process technology," said Eg. "We had built up strong in-house capabilities in developing process technologies for specific applications such as RF, High Voltage and Low Power in 0.18-micron for the past few years and we are currently developing these application specific process technologies on 0.13-micron. We will continue to move these technologies down to 90-nm and 65-nm with our customers. Our aim is to offer the best total solution to our customers - and the availability of technologies for the right process node is critical to that goal."


About Silterra Malaysia Sdn Bhd
Market demand driven, Silterra Malaysia Sdn Bhd is a semiconductor wafer foundry offering major foundry compatible CMOS logic, high-voltage and mixed-signal/RF technologies down to 0.13-micron feature size. This includes complete, competitive contract manufacturing for fabless and IDM customers’ designs. Silterra’s wafer fab has a design capacity of 40,000 eight-inch wafers per month.

Environmentally vigilant, Silterra delivers award winning, world-class performance to its customers seeking flexible capacity, competitive advantages and around the clock customer support. Silterra is ISO 9001:2000 and ISO 14001 certified. Founded in 1995, the company’s headquarters and factory are located in Malaysia’s Kulim High-Tech Park, and Silterra has sales and marketing offices in San Jose (California) and Hsinchu (Taiwan). For additional information on Silterra or its services, please visit .

About IMEC

IMEC is a world-leading independent research center in nanoelectronics and nanotechnology. Its research focuses on the next generations of chips and systems, and on the enabling technologies for ambient intelligence. IMEC’s research bridges the gap between fundamental research at universities and technology development in industry. Its unique balance of processing and system know-how, intellectual property portfolio, state-of-the-art infrastructure and its strong network of companies, universities and research institutes worldwide position IMEC as a key partner for shaping technologies for future systems. IMEC is headquartered in Leuven, Belgium, has a sister company in the Netherlands, IMEC Nederland, concentrating on wireless autonomous transducer solutions, and has representatives in the US, China and Japan. Its staff of more than 1500 people includes more than 500 industrial residents and guest researchers. In 2006, its revenue (P&L) was EUR 227 million. Further information on IMEC can be found on .

For more information, please click here

David Fung
Sales and Marketing (USA and Europe)
Silterra Malaysia Sdn. Bhd.
P: 1-408-530-0883
F: 1-408-530-0877

Tahiruddin Hamdan
Corporate Development & External Affairs
Silterra Malaysia Sdn. Bhd.
P: 604-401-5556
F: 604-403-1699

Copyright © TechWhack

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

Unusual quantum liquid on crystal surface could inspire future electronics October 22nd, 2016

Scientists find technique to improve carbon superlattices for quantum electronic devices: In a paradigm shift from conventional electronic devices, exploiting the quantum properties of superlattices holds the promise of developing new technologies October 20th, 2016

Exploring defects in nanoscale devices for possible quantum computing applications October 19th, 2016

Leti Scientists Participating in Sessions on Med Tech, Automotive Technologies, MEMS, Si-photonics and Lithography at SEMICON Europa: Teams also Will Demonstrate Technology Advances in Telecom, Data Fusion, Energy, Silicon Photonics and 3D Integration October 18th, 2016


Scientists find technique to improve carbon superlattices for quantum electronic devices: In a paradigm shift from conventional electronic devices, exploiting the quantum properties of superlattices holds the promise of developing new technologies October 20th, 2016

Metamaterial uses light to control its motion October 10th, 2016

Core technology springs from nanoscale rods: Rice University lab turns nanorods into multistate switches with an electron beam October 10th, 2016

Electrons in graphene behave like light, only better: Researchers discover that electrons mimic light in graphene, confirming a 2007 prediction – their finding may enable new low power electronics and lead to new experimental probes October 5th, 2016


Unusual quantum liquid on crystal surface could inspire future electronics October 22nd, 2016

Nanosciences: Genes on the rack October 21st, 2016

Physicists use lasers to capture first snapshots of rapid chemical bonds breaking October 21st, 2016

Nanoparticle vaccinates mice against dengue fever October 21st, 2016

Alliances/Trade associations/Partnerships/Distributorships

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

Arrowhead and Spring Bank Announce Clinical Collaboration for ARC-520 and SB 9200 in Chronic Hepatitis B October 6th, 2016

STMicroelectronics’ Semiconductor Chips Contribute to Connected Toothbrush from Oral-B That Sees What You Don’t: Microcontroller and Accelerometer help brushers clean their teeth more effectively October 4th, 2016

Leti to Tackle Tomorrow's Research Strategies with Stanford University’s SystemX Alliance: French R&D Center Is the First Research Institute to Join the Collaboration and Provides Bridges Between Academia and Industry, Leveraging Alliance’s Potential October 4th, 2016

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project