Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > News > Surface transforms self-organization

June 7th, 2007

Surface transforms self-organization

Abstract:
Future organic electrical and optical devices could be based on thiophenes, including oligothiophenes, because of their potential for improved and tunable properties. Devices based on these materials also offer the incentive of easy fabrication via self-organization. However, the assembly of these molecules depends not only their individual properties, but also on their arrangement on and interaction with a surface. A research team led by WAN Lijun from the Chinese Academy of Scienecs (CAS) Key Laboratory of Molecular Nanostructure and Nanotechnology affiliated to the CAS Institute of Chemistry has used scanning tunneling microscopy (STM) to investigate two oligothiophenes on Au and highly oriented pyrolytic graphite (HOPG) surfaces. Their work has been reported in a recent issue of Proceedings of the National Academy of Sciences (PNAS).

Source:
nanowerk.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Discoveries

Copper shines as flexible conductor August 29th, 2014

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

New technique uses fraction of measurements to efficiently find quantum wave functions August 28th, 2014

The thunder god vine, assisted by nanotechnology, could shake up future cancer treatment: Targeted therapy for hepatocellular carcinoma using nanotechnology August 27th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

Copper shines as flexible conductor August 29th, 2014

The thunder god vine, assisted by nanotechnology, could shake up future cancer treatment: Targeted therapy for hepatocellular carcinoma using nanotechnology August 27th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE