Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanotube flickering reveals single-molecule rendezvous

Abstract:
In this week's issue of Science, French and U.S. researchers describe a new technique that allowed them to zoom in and observe quantum quasiparticles called excitons on individual carbon nanotubes. The team, which was led by Rice University chemist Bruce Weisman and University of Bordeaux physicist Laurent Cognet, found that each exciton travels about 90 nanometers and visits around 10,000 carbon atoms during its 100-trillionth-of-a-second lifespan.

Nanotube flickering reveals single-molecule rendezvous

Houston, TX | Posted on June 7th, 2007

In the quantum world, photons and electrons dance, bump and carry out transactions that govern everything we see in the world around us. In this week's issue of Science, French and U.S. scientists describe a new technique in nanotechnology that allowed them to zoom in -- way in -- and observe those quantum transactions on a single DNA-sized carbon molecule called a nanotube.

The team, led by Rice University chemist Bruce Weisman and University of Bordeaux physicist Laurent Cognet, focused on short-lived quantum oddities called "excitons," which are created when light hits a semiconductor.

"Excitons in carbon nanotubes only last about 100 trillionths of a second," Weisman said. "They wink out of existence when the nanotube emits a photon of fluorescent light, but during their short lifetimes they can move around."

To study exciton mobility on nanotubes, Cognet and his co-workers conducted experiments during a sabbatical visit to Weisman's lab at Rice in early 2007. They used a fluorescence microscope to observe tiny sections of individual nanotubes less than a micrometer long. The nanotubes were held still in a soft liquid gel. By shining light on them while introducing acids and other chemicals into the gel, the team was able to observe reactions that would quench, or kill, any passing excitons. To do this, they used a time-lapse infrared camera to capture the fluorescent glow from the nanotube about 20 times a second. They then compiled records that revealed the characteristic steps that are the signature of exciton quenching by single molecules.

"We found that each nanotube exciton travels about 90 nanometers and visits some 10,000 carbon atoms during its lifespan," Cognet said.

Excitons are "quasiparticles" created when a photon strikes a semiconductor and excites an electron to a higher energy level. The electron leaves behind a positively charged void called a "hole." That hole pairs with the electron to form the exciton, which takes on a life of its own that ends abruptly when it emits a photon or becomes quenched.

Cognet said the unusual electronic properties of carbon nanotubes made them a unique system to observe single-molecule reactions.

"Nanotubes provided us a very stable baseline for our measurements," he said. "No other light-emitting molecules have the properties that we needed for this experiment."

Weisman helped found the field of nanotube spectroscopy with the 2002 discovery of nanotube fluorescence and subsequent research that classified the light signatures of dozens of types of semiconducting nanotubes.

"I was impressed at the speed and quality of the work that Dr. Cognet and the team produced during this project," said Weisman, professor of chemistry. "His visit to Rice has been extremely productive."

Research co-authors include: James Tour, Chao Professor of Chemistry; Dmitri Tsyboulski, Evans Attwell Postdoctoral Fellow; and graduate students John-David Rocha and Condell Doyle.

The research was funded by CNRS (France), the Fulbright Foundation, the Welch Foundation, NASA, Applied NanoFluorescence, LLC, the National Science Foundation, Rice's Center for Biological and Environmental Nanotechnology, and the Rice-Houston Alliance for Graduate Education and the Professoriate.

####

About Rice University
Rice University is consistently ranked one of America’s best teaching and research universities. It is distinguished by its: size—2,850 undergraduates and 1,950 graduate students; selectivity—10 applicants for each place in the freshman class; resources—an undergraduate student-to-faculty ratio of 6-to-1, and the fifth largest endowment per student among American universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work. Rice’s wooded campus is located in the nation’s fourth largest city and on America’s South Coast.

For more information, please click here

Contacts:
Jade Boyd
713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanotubes/Buckyballs/Fullerenes

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

World's most powerful X-ray takes a 'sledgehammer' to molecules September 14th, 2016

Researchers design solids that control heat with spinning superatoms: Carnegie Mellon University and Columbia University collaborators discover the cause of vastly different thermal conductivities in superatomic structural analogues September 8th, 2016

For first time, carbon nanotube transistors outperform silicon September 8th, 2016

Discoveries

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

UNAM develops successful nano edible coating which increases life food September 27th, 2016

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Announcements

Dr Barbara Armbruster promoted to Worldwide Sales and Marketing Director for XEI Scientific September 27th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

UNAM develops successful nano edible coating which increases life food September 27th, 2016

Quantum nanoscience

Chains of nanogold – forged with atomic precision September 23rd, 2016

Notre Dame researchers find transition point in semiconductor nanomaterials September 6th, 2016

NREL Discovery Creates Future Opportunity in Quantum Computing: Research into perovskites looks beyond material’s usage for efficient solar cells September 1st, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic