Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanotube flickering reveals single-molecule rendezvous

Abstract:
In this week's issue of Science, French and U.S. researchers describe a new technique that allowed them to zoom in and observe quantum quasiparticles called excitons on individual carbon nanotubes. The team, which was led by Rice University chemist Bruce Weisman and University of Bordeaux physicist Laurent Cognet, found that each exciton travels about 90 nanometers and visits around 10,000 carbon atoms during its 100-trillionth-of-a-second lifespan.

Nanotube flickering reveals single-molecule rendezvous

Houston, TX | Posted on June 7th, 2007

In the quantum world, photons and electrons dance, bump and carry out transactions that govern everything we see in the world around us. In this week's issue of Science, French and U.S. scientists describe a new technique in nanotechnology that allowed them to zoom in -- way in -- and observe those quantum transactions on a single DNA-sized carbon molecule called a nanotube.

The team, led by Rice University chemist Bruce Weisman and University of Bordeaux physicist Laurent Cognet, focused on short-lived quantum oddities called "excitons," which are created when light hits a semiconductor.

"Excitons in carbon nanotubes only last about 100 trillionths of a second," Weisman said. "They wink out of existence when the nanotube emits a photon of fluorescent light, but during their short lifetimes they can move around."

To study exciton mobility on nanotubes, Cognet and his co-workers conducted experiments during a sabbatical visit to Weisman's lab at Rice in early 2007. They used a fluorescence microscope to observe tiny sections of individual nanotubes less than a micrometer long. The nanotubes were held still in a soft liquid gel. By shining light on them while introducing acids and other chemicals into the gel, the team was able to observe reactions that would quench, or kill, any passing excitons. To do this, they used a time-lapse infrared camera to capture the fluorescent glow from the nanotube about 20 times a second. They then compiled records that revealed the characteristic steps that are the signature of exciton quenching by single molecules.

"We found that each nanotube exciton travels about 90 nanometers and visits some 10,000 carbon atoms during its lifespan," Cognet said.

Excitons are "quasiparticles" created when a photon strikes a semiconductor and excites an electron to a higher energy level. The electron leaves behind a positively charged void called a "hole." That hole pairs with the electron to form the exciton, which takes on a life of its own that ends abruptly when it emits a photon or becomes quenched.

Cognet said the unusual electronic properties of carbon nanotubes made them a unique system to observe single-molecule reactions.

"Nanotubes provided us a very stable baseline for our measurements," he said. "No other light-emitting molecules have the properties that we needed for this experiment."

Weisman helped found the field of nanotube spectroscopy with the 2002 discovery of nanotube fluorescence and subsequent research that classified the light signatures of dozens of types of semiconducting nanotubes.

"I was impressed at the speed and quality of the work that Dr. Cognet and the team produced during this project," said Weisman, professor of chemistry. "His visit to Rice has been extremely productive."

Research co-authors include: James Tour, Chao Professor of Chemistry; Dmitri Tsyboulski, Evans Attwell Postdoctoral Fellow; and graduate students John-David Rocha and Condell Doyle.

The research was funded by CNRS (France), the Fulbright Foundation, the Welch Foundation, NASA, Applied NanoFluorescence, LLC, the National Science Foundation, Rice's Center for Biological and Environmental Nanotechnology, and the Rice-Houston Alliance for Graduate Education and the Professoriate.

####

About Rice University
Rice University is consistently ranked one of America’s best teaching and research universities. It is distinguished by its: size—2,850 undergraduates and 1,950 graduate students; selectivity—10 applicants for each place in the freshman class; resources—an undergraduate student-to-faculty ratio of 6-to-1, and the fifth largest endowment per student among American universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work. Rice’s wooded campus is located in the nation’s fourth largest city and on America’s South Coast.

For more information, please click here

Contacts:
Jade Boyd
713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanotubes/Buckyballs/Fullerenes/Nanorods

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Killing cancer in the heat of the moment: A new method efficiently transfers genes into cells, then activates them with light. This could lead to gene therapies for cancers July 9th, 2017

Discoveries

Band Gaps, Made to Order: Engineers create atomically thin superlattice materials with precision September 26th, 2017

Assembly of nanoparticles proceeds like a zipper: Viruses and nanoparticles can be assembled into processable superlattice wires according to scientists from Aalto University Finland September 25th, 2017

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Announcements

Band Gaps, Made to Order: Engineers create atomically thin superlattice materials with precision September 26th, 2017

Assembly of nanoparticles proceeds like a zipper: Viruses and nanoparticles can be assembled into processable superlattice wires according to scientists from Aalto University Finland September 25th, 2017

Enhancing the sensing capabilities of diamonds with quantum properties: A simple method can give diamonds the special properties needed for quantum applications such as sensing magnetic fields September 24th, 2017

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Quantum nanoscience

Enhancing the sensing capabilities of diamonds with quantum properties: A simple method can give diamonds the special properties needed for quantum applications such as sensing magnetic fields September 24th, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Quantum detectives in the hunt for the world's first quantum computer September 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project