Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Optoelectronic Tweezers Push Nanowires Around

Abstract:


New Technique May Aid Biological Studies, Nanotech Construction

News from the Conference on Lasers and Electro-Optics/Quantum Electronics Laser Science Conference (CLEO/QELS)

Optoelectronic Tweezers Push Nanowires Around

Baltimore, MD | Posted on April 27th, 2007

In efforts that can improve studies of biological objects and the construction of nanotech materials, researchers at the University of California-Berkeley have invented "optoelectronic tweezers," a new way of controlling nanometer-scale objects. The research will be presented at the upcoming CLEO/QELS meeting in Baltimore.

In the design, the researchers reflect light from a digitally controlled array of mirrors, sending the light through a magnifying lens, and then into a sandwich of semiconductor planes, creating (at the interface between two of the planes) as many as 15,000 traps that can be addressed separately. In each of the traps, objects such as biological cells can be studied. Optoelectronic tweezers, which use optical energy to create powerful electric forces in carefully prescribed places, differ from ordinary optical tweezers, which use optical energy to create mechanical forces that can push things around, helping to make the technique potentially easier for laboratories to implement.

According to Berkeley's Aaron Ohta, the optoelectronic approach uses much less power than optical tweezers and doesn't need to be as carefully focused. In recent months the Berkeley group has had some success in using their locally controlled electric fields to manipulate the positions of tiny nanorods (100 nanometers in diameter and 1-50 microns long). The rods are suspended in a thin layer of water by sound waves and then transferred to the tweezer apparatus. Ohta says that the lateral-field optoelectronic device will possibly be used to place rods for the sake of building 3-D circuitry or for positioning oblong-shaped cells or cell protrusions with micron-level precision.

More images and movies at http://nanophotonics.eecs.berkeley.edu/ .

Meeting Paper: CThGG5, "Trapping and Transport of Silicon Nanowires Using Lateral-Field Optoelectronic Tweezers," Ohta et al., Thursday, May 10, 5:45 p.m. - 6:15 p.m.

####

About CLEO/QELS
With a distinguished history as one of the industry's leading events on laser science, the Conference on Lasers and Electro-Optics and the Quantum Electronics and Laser Science Conference (CLEO/QELS) is where laser technology was first introduced. CLEO/QELS combines the strength of peer-reviewed scientific programming with an applications-focused exhibition to showcase the present and future of this technology. Sponsored by the American Physical Society's (APS) Laser Science Division, the Institute of Electronic Engineers/Laser and Electro-Optics Society (IEEE/LEOS) and the Optical Society of America (OSA), CLEO/QELS provides an educational forum, complete with a dynamic Plenary, short courses, tutorials, workshops and more, on topics as diverse as its attendee base whose broad spectrum of interests range from biomedicine to defense to optical communications and beyond. For more information, visit the conference's Web site at http://www.cleoconference.org .

For more information, please click here

Contacts:
CLEO/QELS
Colleen Morrison, 202-416-1437

Copyright © Business Wire 2007

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Molecular Machines

Structural Insights into the Inner Workings of a Viral Nanomachine April 3rd, 2014

Big data tackles tiny molecular machines:Rice University technique able to analyze conformations of complex molecular machines March 14th, 2014

Advantages emerge in using nanostructured material in the forging process of mechanical components February 28th, 2014

Nanomotors are controlled, for the first time, inside living cells February 10th, 2014

Molecular Nanotechnology

Roomy cages built from DNA: Self-assembling cages are the largest standalone 3-D DNA structures yet, and could one day deliver drugs, or house tiny bioreactors or photonic devices March 13th, 2014

Advantages emerge in using nanostructured material in the forging process of mechanical components February 28th, 2014

Stirring-up atomtronics in a quantum circuit: What's so 'super' about this superfluid February 12th, 2014

Nanomotors are controlled, for the first time, inside living cells February 10th, 2014

Announcements

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Harris & Harris Group Continues Its Blog Series to Highlight Most Impactful Portfolio Companies With Champions Oncology, Inc. April 17th, 2014

Aerotech X-Y ball-screw stage for economical high performance Planar positioning April 16th, 2014

Energy Research Facility Construction Project at Brookhaven Lab Wins U.S. Energy Secretary's Achievement Award April 16th, 2014

Events/Classes

'Life Redesigned: The Emergence of Synthetic Biology' Lecture at Brookhaven Lab on Wednesday, April 30: Biomedical Engineer James Collins to Speak for BSA Distinguished Lecture Series April 16th, 2014

ECHA Planning Workshop on Regulatory Challenges in the Risk Assessment of Nanomaterials April 16th, 2014

Engineers develop new materials for hydrogen storage April 15th, 2014

Near-field Nanophotonics Workshop in Boston April 14th, 2014

Nanobiotechnology

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Biologists Develop Nanosensors to Visualize Movements and Distribution of Plant Stress Hormone April 15th, 2014

In latest generation of tiny biosensors, size isn't everything: UCLA researchers overturn conventional wisdom on nanowire-based diagnostic devices April 11th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE