Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Optoelectronic Tweezers Push Nanowires Around

Abstract:


New Technique May Aid Biological Studies, Nanotech Construction

News from the Conference on Lasers and Electro-Optics/Quantum Electronics Laser Science Conference (CLEO/QELS)

Optoelectronic Tweezers Push Nanowires Around

Baltimore, MD | Posted on April 27th, 2007

In efforts that can improve studies of biological objects and the construction of nanotech materials, researchers at the University of California-Berkeley have invented "optoelectronic tweezers," a new way of controlling nanometer-scale objects. The research will be presented at the upcoming CLEO/QELS meeting in Baltimore.

In the design, the researchers reflect light from a digitally controlled array of mirrors, sending the light through a magnifying lens, and then into a sandwich of semiconductor planes, creating (at the interface between two of the planes) as many as 15,000 traps that can be addressed separately. In each of the traps, objects such as biological cells can be studied. Optoelectronic tweezers, which use optical energy to create powerful electric forces in carefully prescribed places, differ from ordinary optical tweezers, which use optical energy to create mechanical forces that can push things around, helping to make the technique potentially easier for laboratories to implement.

According to Berkeley's Aaron Ohta, the optoelectronic approach uses much less power than optical tweezers and doesn't need to be as carefully focused. In recent months the Berkeley group has had some success in using their locally controlled electric fields to manipulate the positions of tiny nanorods (100 nanometers in diameter and 1-50 microns long). The rods are suspended in a thin layer of water by sound waves and then transferred to the tweezer apparatus. Ohta says that the lateral-field optoelectronic device will possibly be used to place rods for the sake of building 3-D circuitry or for positioning oblong-shaped cells or cell protrusions with micron-level precision.

More images and movies at http://nanophotonics.eecs.berkeley.edu/ .

Meeting Paper: CThGG5, "Trapping and Transport of Silicon Nanowires Using Lateral-Field Optoelectronic Tweezers," Ohta et al., Thursday, May 10, 5:45 p.m. - 6:15 p.m.

####

About CLEO/QELS
With a distinguished history as one of the industry's leading events on laser science, the Conference on Lasers and Electro-Optics and the Quantum Electronics and Laser Science Conference (CLEO/QELS) is where laser technology was first introduced. CLEO/QELS combines the strength of peer-reviewed scientific programming with an applications-focused exhibition to showcase the present and future of this technology. Sponsored by the American Physical Society's (APS) Laser Science Division, the Institute of Electronic Engineers/Laser and Electro-Optics Society (IEEE/LEOS) and the Optical Society of America (OSA), CLEO/QELS provides an educational forum, complete with a dynamic Plenary, short courses, tutorials, workshops and more, on topics as diverse as its attendee base whose broad spectrum of interests range from biomedicine to defense to optical communications and beyond. For more information, visit the conference's Web site at http://www.cleoconference.org .

For more information, please click here

Contacts:
CLEO/QELS
Colleen Morrison, 202-416-1437

Copyright © Business Wire 2007

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Molecular Machines

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

University of Illinois researchers demonstrate novel, tunable nanoantennas July 14th, 2014

Molecular Nanotechnology

Penn Team Studies Nanocrystals by Passing Them Through Tiny Pores September 26th, 2014

Nanoscale assembly line August 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

Announcements

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

Stressed Out: Research Sheds New Light on Why Rechargeable Batteries Fail October 1st, 2014

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Graphene chips are close to significant commercialization October 1st, 2014

Events/Classes

Yale University and Leica Microsystems Partner to Establish Microscopy Center of Excellence: Yale Welcomes Scientists to Participate in Core Facility Opening and Super- Resolution Workshops October 20 Through 31, 2014 September 30th, 2014

Oxford Instruments launches 3rd annual Indian nanotechnology seminars in Kolkata and Delhi - sharing expertise with Nanotechnology researchers in India September 25th, 2014

Grenoble Hosting SEMICON Europa Oct. 7-9, First Time Event Held in France: Letiís 90-square-meter Booth Will Feature Portable Showroom To Demonstrate New Technology Innovations September 24th, 2014

Contributing to the spirit of the IYCR 2014 September 24th, 2014

Nanobiotechnology

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

How things coil: Researchers discover that simulation technology designed for Hollywood can be used as a predictive tool for understanding fundamental engineering problems September 29th, 2014

Penn Team Studies Nanocrystals by Passing Them Through Tiny Pores September 26th, 2014

New NIH/DOE Grant for Life Science Studies at NSLS-II: Funding will support operation of three powerful experimental stations designed to reveal detailed structures of proteins, viruses, and more September 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE