Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > New Materials for Making "Spintronic" Devices

L to R: Alexei Tsvelik, Dmitri Kharzeev, Igor Zaliznyak.
L to R: Alexei Tsvelik, Dmitri Kharzeev, Igor Zaliznyak.

Abstract:
Pushing the development of electronics beyond the limits of electric charge

New Materials for Making "Spintronic" Devices

UPTON, NY | Posted on April 25th, 2007

An interdisciplinary group of scientists at the U.S. Department of Energy's Brookhaven National Laboratory has devised methods to make a new class of electronic devices based on a property of electrons known as "spin," rather than merely their electric charge. This approach, dubbed spintronics, could open the way to increasing dramatically the productivity of electronic devices operating at the nanoscale - on the order of billionths of a meter. The Brookhaven scientists have filed a U.S. provisional patent application for their invention, which is now available for licensing.

"This development can open the way for the use of spintronics in practical room temperature devices, an exciting prospect," said DOE Under Secretary for Science Raymond L. Orbach. "The interplay between outstanding facilities and laboratory researchers is a root cause for this achievement, and a direct consequence of the collaborative transformational research that takes place in our DOE laboratories."

In the field of electronics, devices based on manipulating electronic charges have been rapidly shrinking and, therefore, getting more efficient, ever since they were first developed in the middle of the last century. "But progress in miniaturization and increasing efficiency is approaching a fundamental technological limit imposed by the atomic structure of matter," said physicist Igor Zaliznyak, lead author on the Brookhaven Lab patent application. Once you've made circuits that approach the size of a few atoms or a single atom, you simply cannot make them any smaller.

To move beyond this limit, Zaliznyak's team has been exploring ways to take advantage of an electron's "quantum spin" in addition to its electric charge.

You can think of spin as somewhat analogous to the spin of a toy top, where the axis of rotation can point in any direction. But unlike a top, which can be slowed down, the "spinning" electron's rotation is a quantum property - that is, a set amount that cannot change. By aligning the spins of multiple electrons so they all point the same way - known as polarization - scientists aim to create a current of spins in addition to a current of charges.

The Brookhaven group uses magnetism to manipulate spin in graphene, a material consisting of flat sheets of carbon atoms arranged in a hexagonal pattern. They've proposed ways to make materials consisting of layers of graphene mated to magnetic and nonmagnetic layers.

These "graphene-magnet multilayers" (GMMs) are expected to retain their properties at room temperature, an important practical requirement for spintronic devices. By properly arranging the magnetization of the magnetic layer(s), they can be used to create a full spectrum of spintronic devices, including (re-)writable microchips, transistors, logic gates, and more. Using magnetism for spin manipulation also opens exciting possibilities for creating active, re-writable and re-configurable devices whose function changes depending on the magnetization pattern written on the magnetic medium.

"Graphene is quite unique," Zaliznyak says, "in that an ideally balanced sheet is neither a conductor nor an insulator. Related to this is the fact that electrons in graphene behave in such a way that their mass effectively vanishes!" In other words, he explains, they move without inertia, like rays of light or particles accelerated to relativistic speeds - that is, close to the speed of light.

Such relativistic particles are studied at Brookhaven at the Relativistic Heavy Ion Collider (RHIC), a nuclear physics facility where scientists are trying to understand the fundamental properties and forces of matter. RHIC theoretical physicist Dmitri Kharzeev and condensed matter physicist Alexei Tsvelik have collaborated with Zaliznyak to gain a better understanding of the physics of magnetized graphene.

"Unifying the pool of knowledge and ideas of two fields is a great advantage for building the theoretical foundation for future devices," Zaliznyak said. The patent application filed by the Brookhaven scientists, which puts graphene-magnet multilayers to work, leverages the large amount of scientific knowledge accumulated in both fields into developing a novel technology. Plus, the opportunity to study relativistic particles in two dimensions - on flat sheets of graphene - was an unexpected and useful arena for Brookhaven's nuclear physicists trying to understand the properties of the matter produced at RHIC.

The patent application covers the methods for making the graphene-magnet multilayers, methods of using the GMMs, methods of magnetizing the GMMs, methods for measuring spintronic "current" in GMMs, and the spintronic devices made from GMMs.

This work was funded by the Office of Basic Energy Sciences and the Office of Nuclear Physics, both within the U.S. Department of Energy's Office of Science. For licensing information, please contact: Kimberley Elcess, Principal Licensing Specialist, Brookhaven National Laboratory, (631) 344-4151,

Note to local editors: Igor Zaliznyak is a resident of Port Jefferson, New York.

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation of State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

Visit Brookhaven Lab's electronic newsroom for links, news archives, graphics, and more: http://www.bnl.gov/newsroom

For more information, please click here

Contacts:
Karen McNulty Walsh

(631)344-8350
or
Mona Rowe

(631) 344-5056

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Spintronics

Graphene and Amaranthus Superparamagnets: Breakthrough nanoparticles discovery of Indian researcher September 23rd, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Molecular engineers record an electron's quantum behavior August 14th, 2014

Discoveries

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Iranian, Malaysian Scientists Study Nanophotocatalysts for Water Purification October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Announcements

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Patents/IP/Tech Transfer/Licensing

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Nanodevices for clinical diagnostic with potential for the international market: The development is based on optical principles and provides precision and allows saving vital time for the patient October 15th, 2014

Aculon Receives Patent for Application of Enhanced Bonding Layers on Titanium October 9th, 2014

harmaEngine will join Nanobiotix’ pivotal trial for NBTXR3 in Soft Tissue Sarcoma to accelerate its development in Asia-Pacific: PharmaEngine to make milestone payment to Nanobiotix in October 2014 to recognize the value created October 8th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE