Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanotechnology offers hope for treating spinal cord injuries, diabetes, and Parkinson's disease

Abstract:
Science of tomorrow promises to alleviate suffering from intractable ailments of today

Nanotechnology offers hope for treating spinal cord injuries, diabetes, and Parkinson's disease

Washington, DC | Posted on April 22nd, 2007

Imagine a world where damaged organs in your body—kidneys, liver, heart—can be stimulated to heal themselves. Envision people tragically paralyzed whose injured spinal cords can be repaired. Think about individuals suffering from the debilitating effects of Parkinson's or Alzheimer's relieved of their symptoms - completely and permanently.

Dr. Samuel I. Stupp, director of the Institute of BioNanotechnology in Medicine at Northwestern University, is one of a new breed of scientists combining nanotechnology and biology to enable the body to heal itself -- and who are achieving amazing early results. Dr. Stupp's work suggests that nanotechnology can be used to mobilize the body's own healing abilities to repair or regenerate damaged cells.

In a dramatic demonstration of what nanotechnology might achieve in regenerative medicine, paralyzed lab mice with spinal cord injuries have regained the ability to walk using their hind limbs six weeks after a simple injection of a purpose-designed nanomaterial.

A video of Dr. Stupp discussing his groundbreaking research with collaborator John Kessler is available on April 24 at http://www.nanotechproject.org/114 .

"By injecting molecules that were designed to self-assemble into nanostructures in the spinal tissue, we have been able to rescue and regrow rapidly damaged neurons," said Dr. Stupp at an April 23 session hosted by the Project on Emerging Nanotechnologies. "The nanofibers - thousands of times thinner than a human hair - are the key to not only preventing the formation of harmful scar tissue which inhibits spinal cord healing, but to stimulating the body into regenerating lost or damaged cells."

Stupp's work hinges on a fundamental area of nanotechnology - self-assembly - that someday should enable medical researchers to tailor and deliver individualized patient treatments in previously unimaginable ways. Stupp and his coworkers designed molecules with the capacity to self-assemble into nanofibers once injected into the body with a syringe. When the nanofibers form they can be immobilized in an area of tissue where it is necessary to activate some biological process, for example saving damaged cells or regenerating needed differentiated cells from stem cells.

This same work also has implications for Parkinson's and Alzheimer's, both diseases in which key brain cells stop working properly.

During his presentation, Dr. Stupp allowed a rare glimpse into ongoing research with collaborators in Mexico and Canada, showing the impressive visual of mice recovering from the symptoms of Parkinson's disease after being exposed to the bioactive nanostructures developed in Stupp's laboratory at Northwestern University. Stupp also showed another nanotechnology achievement in joint work with Jon Lomasney at Northwestern demonstrating the use of nanostructures and proteins to achieve recovery of heart function after an infarction.

"This research provides an early glimpse into the new and exciting places where nanotechnology can take us," said Project on Emerging Nanotechnologies Director David Rejeski at the session, which also served as the release of the new report NanoFrontiers: Visions for the Future of Nanotechnology. www.nanotechproject.org/events/archive/nanofrontiers_visions_for_future/ "This type of work helps us to see beyond first generation, ‘gee-whiz' nanotech applications like better tennis racquets or anti-static fabrics, and reach for an end to human suffering from Parkinson's, heart disease, and even cancer."

####

About The Project on Emerging Nanotechnologies
About Nanotechnology

Nanotechnology entails the measurement, prediction and construction of materials on the scale of atoms and molecules. A nanometer is one-billionth of a meter, and nanotechnology typically deals with particles and structures larger than 1 nanometer, but smaller than 100 nanometers. A nanometer-size particle is about twice the diameter of a gold atom and a very small fraction of the size of a living cell. Such a particle can be seen only with the most powerful microscopes.

The Project on Emerging Nanotechnologies is an initiative launched by the Woodrow Wilson International Center for Scholars and The Pew Charitable Trusts in 2005. It is dedicated to helping business, government and the public anticipate and manage possible health and environmental implications of nanotechnology. For more information about the project, log on to http://www.nanotechproject.org .

For more information, please click here

Contacts:
Sharon McCarter

202-691-4016

Copyright © Woodrow Wilson International Center for Scholars

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Self Assembly

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Carnegie Mellon chemists create tiny gold nanoparticles that reflect nature's patterns April 9th, 2015

Nanomedicine

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Announcements

Global Nano-Enabled Packaging Market For Food and Beverages Will Reach $15.0 billion in 2020 May 26th, 2015

Dr.Theivasanthi Slashes the Price of Graphene Heavily: World first & lowest price – Nano-price (30 USD / kg) of graphene by nanotechnologist May 26th, 2015

Fine-tuned molecular orientation is key to more efficient solar cells May 26th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project