Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Plastic solar cell efficiency breaks record at WFU nanotechnology center

Abstract:
The global search for a sustainable energy supply is making significant strides at Wake Forest University as researchers at the university's Center for Nanotechnology and Molecular Materials have announced that they have pushed the efficiency of plastic solar cells to more than 6 percent.

In a paper to be published in an upcoming issue of the journal Applied Physics Letters, Wake Forest researchers describe how they have achieved record efficiency for organic or flexible, plastic solar cells by creating "nano-filaments" within light absorbing plastic, similar to the veins in tree leaves. This allows for the use of thicker absorbing layers in the devices, which capture more of the sun's light.

Plastic solar cell efficiency breaks record at WFU nanotechnology center

Winston-Salem, NC | Posted on April 18th, 2007

Efficient plastic solar cells are extremely desirable because they are inexpensive and light weight, especially in comparison to traditional silicon solar panels. Traditional solar panels are heavy and bulky and convert about 12 percent of the light that hits them to useful electrical power. Researchers have worked for years to create flexible, or "conformal," organic solar cells that can be wrapped around surfaces, rolled up or even painted onto structures.

Three percent was the highest efficiency ever achieved for plastic solar cells until 2005 when David Carroll, director of the Wake Forest nanotechnology center, and his research group announced they had come close to reaching 5 percent efficiency.

Now, a little more than a year later, Carroll said his group has surpassed the 6 percent mark.

"Within only two years we have more than doubled the 3 percent mark," Carroll said. "I fully expect to see higher numbers within the next two years, which may make plastic devices the photovoltaic of choice."

In order to be considered a viable technology for commercial use, solar cells must be able to convert about 8 percent of the energy in sunlight to electricity. Wake Forest researchers hope to reach 10 percent in the next year, said Carroll, who is also associate professor of physics at Wake Forest.

Because they are flexible and easy to work with, plastic solar cells could be used as a replacement for roof tiling or home siding products or incorporated into traditional building facades. These energy harvesting devices could also be placed on automobiles. Since plastic solar cells are much lighter than the silicon solar panels structures do not have to be reinforced to support additional weight.

A large part of Carroll's research is funded by the United States Air Force, which is interested in the potential uses of more efficient, light-weight solar cells for satellites and spacecraft. Other members of Carroll's research team include Jiwen Liu and Manoj Namboothiry, postdoctoral associates at Wake Forest's nanotechnology center, and Kyungkon Kim, a postdoctoral researcher at the center, who has moved to the Materials Science & Technology Division at the Korea Institute of Science and Technology in Seoul.

####

About Wake Forest University
Wake Forest University is dedicated to the pursuit of excellence in the liberal arts and in graduate and professional education.

For more information, please click here

Contacts:
Jacob McConnico
(336) 758-5237


Kevin Cox
(336) 758-5237

Copyright © Wake Forest University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Discoveries

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Announcements

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Energy

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative May 10th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

Solar/Photovoltaic

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative May 10th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project