Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > New Nanolayer-based Technology Highly Reduces Engine Emission and Improves Fuel Consumption

Abstract:
Engine Test Conducted by the Technion:
FriCSo's Technology Highly Reduces Particulate Emission and Improves Fuel Consumption

New Nanolayer-based Technology Highly Reduces Engine Emission and Improves Fuel Consumption

Farmington Hills, MI | Posted on April 16th, 2007

FriCSo, Inc. ( http://www.fricso.com ), a developer and manufacturer of environmentally friendly technology and polymer-based devices that create a friction reduction nanolayer on moving parts, today announced that a test conducted by the Technion - Israel Institute of Technology found that FriCSo's Surface Engineering Treatment (SET) highly reduces particulate matter emissions, increases engine mechanical efficiency, and reduces fuel consumption.

FriCSo's breakthrough SET technology reduces the friction between moving parts using an innovative polymer-based machining process. SET creates an oil-retaining organic nanolayer chemically bonded to the metal surface, increases surface hardness and improves surface topography.

The test was performed on a 4-cylinder tractor diesel engine. The test was conducted by the Internal Combustion Engine Laboratory of the Technion's Mechanical Engineering Faculty. The test consisted of two runs: the first (which served as a baseline) - without any treatment of surfaces, and the second - after replacing the engine's main friction parts (cylinder liners, piston pins, rocker shafts, valves etc.) with new parts treated with FriCSo's SET.

The test results show that using the SET treatment leads to a fuel consumption reduction of 0.4%-4%, depending on engine RPM and load. SET treatment resulted in a substantial decrease of particulate matter emissions (43%-46%), while oil consumption was reduced by 48% compared with the baseline case. In addition, SET treatment led to an improvement of about 2% in the engine's mechanical efficiency.

"This test is further proof that FriCSo's SET introduces a new era in energy efficiency and environmental protection," said Amir Weisberg, CEO of FriCSo, Inc. "FriCSo is setting a new standard for friction and wear reduction, and enables manufacturers to offer superior products to meet market demand, with unprecedented performance."

A copy of the test report can be obtained by contacting Danny Weiss, FriCSo's VP Business Development, at +972-4-858-0008, ext. 104 or emailing him at

FriCSo was recently awarded the 2006 Frost & Sullivan Technology Innovation Award in the field of automotive coatings. According to S. Sumithra, Frost & Sullivan research analyst, "FriCSo's solution is an innovative device, which could potentially replace existing non-environment friendly coatings in the field of automotive coatings." FriCSo's surface treatment delivers coating-like performance.

The Surface Engineering Treatment (SET) comprises one or two processes:
- High performance polymer lapping as a single treatment.
- Two-step treatment consisting of surface texturing using vibro-grooving followed by polymer lapping.

FriCSo's lapping process uses a uniquely designed consumable, patented polymer device. During the lapping process, small fragments torn from the polymeric lapping device with reactive polar groups react chemically with active areas on the abraded metal. The outcome of this process is a unique oil retaining property that significantly improves the metal surface properties. The organic nanolayer that is formed bonds to the metal substrate by strong ionic forces during the lapping process. The formation of these strong chemical bonds aids the adhesion between the polymeric molecules and the metal surface.

The surface texturing process involves introducing recesses onto the surface of the metal. These recesses can be either grooves made by plastic deformation or laser dimples. The recesses in the metal surface act as oil batteries by retaining oil and making it available to the surface in periods of insufficient oil supply. This provides the necessary lubrication among the mechanical parts of the vehicle in oil starvation conditions, such as when an engine is started. These recesses also funnel the metal debris that is created during sliding friction.

####

About FriCSo
FriCSo Friction Control Solutions ( http://www.fricso.com ) was founded in 2003 by Drs. Boris Shamshidov and Alexander Ignatovsky, two scientists specializing in tribology, the science of friction, lubrication and wear. The company's headquarters are located in Farmington Hills, MI, near Detroit the heart of the US automotive industry. The R&D center is located in the Tirat Carmel Industrial Zone, Israel.

In 2007, FriCSo plans to raise about $10 million in a new round of financing. The funds will be used to open the company's new production facility, and to expand its marketing and sales activities in the US, Europe and Asia Pacific. The company raised $7.5 million in two previous rounds. Investors included institutional and private investors, led by Aviv Venture Capital.

For more information, please click here

Contacts:
David Kanaan
Kanaan Public Relations
Tel.: +972-3-5408188

Copyright © FriCSo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Announcements

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Iranian Scientists Use Waste Cotton Fibers to Produce Cellulose Nanoparticles July 29th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Environment

Iranian Scientists Use Waste Cotton Fibers to Produce Cellulose Nanoparticles July 29th, 2014

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Researchers Use Various Zinc Oxide Nanostructures to Boost Efficiency of Water Purification Process July 13th, 2014

Using Sand to Improve Battery Performance: Researchers develop low cost, environmentally friendly way to produce sand-based lithium ion batteries that outperform standard by three times July 8th, 2014

Energy

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2014 conference July 8th, 2014

Automotive/Transportation

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Nano-supercapacitors for electric cars July 25th, 2014

Using Sand to Improve Battery Performance: Researchers develop low cost, environmentally friendly way to produce sand-based lithium ion batteries that outperform standard by three times July 8th, 2014

Up in Flames: Evidence Confirms Combustion Theory: Berkeley Lab and University of Hawaii research outlines the story of soot, with implications for cleaner-burning fuels July 1st, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE