Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New Nanolayer-based Technology Highly Reduces Engine Emission and Improves Fuel Consumption

Abstract:
Engine Test Conducted by the Technion:
FriCSo's Technology Highly Reduces Particulate Emission and Improves Fuel Consumption

New Nanolayer-based Technology Highly Reduces Engine Emission and Improves Fuel Consumption

Farmington Hills, MI | Posted on April 16th, 2007

FriCSo, Inc. ( http://www.fricso.com ), a developer and manufacturer of environmentally friendly technology and polymer-based devices that create a friction reduction nanolayer on moving parts, today announced that a test conducted by the Technion - Israel Institute of Technology found that FriCSo's Surface Engineering Treatment (SET) highly reduces particulate matter emissions, increases engine mechanical efficiency, and reduces fuel consumption.

FriCSo's breakthrough SET technology reduces the friction between moving parts using an innovative polymer-based machining process. SET creates an oil-retaining organic nanolayer chemically bonded to the metal surface, increases surface hardness and improves surface topography.

The test was performed on a 4-cylinder tractor diesel engine. The test was conducted by the Internal Combustion Engine Laboratory of the Technion's Mechanical Engineering Faculty. The test consisted of two runs: the first (which served as a baseline) - without any treatment of surfaces, and the second - after replacing the engine's main friction parts (cylinder liners, piston pins, rocker shafts, valves etc.) with new parts treated with FriCSo's SET.

The test results show that using the SET treatment leads to a fuel consumption reduction of 0.4%-4%, depending on engine RPM and load. SET treatment resulted in a substantial decrease of particulate matter emissions (43%-46%), while oil consumption was reduced by 48% compared with the baseline case. In addition, SET treatment led to an improvement of about 2% in the engine's mechanical efficiency.

"This test is further proof that FriCSo's SET introduces a new era in energy efficiency and environmental protection," said Amir Weisberg, CEO of FriCSo, Inc. "FriCSo is setting a new standard for friction and wear reduction, and enables manufacturers to offer superior products to meet market demand, with unprecedented performance."

A copy of the test report can be obtained by contacting Danny Weiss, FriCSo's VP Business Development, at +972-4-858-0008, ext. 104 or emailing him at

FriCSo was recently awarded the 2006 Frost & Sullivan Technology Innovation Award in the field of automotive coatings. According to S. Sumithra, Frost & Sullivan research analyst, "FriCSo's solution is an innovative device, which could potentially replace existing non-environment friendly coatings in the field of automotive coatings." FriCSo's surface treatment delivers coating-like performance.

The Surface Engineering Treatment (SET) comprises one or two processes:
- High performance polymer lapping as a single treatment.
- Two-step treatment consisting of surface texturing using vibro-grooving followed by polymer lapping.

FriCSo's lapping process uses a uniquely designed consumable, patented polymer device. During the lapping process, small fragments torn from the polymeric lapping device with reactive polar groups react chemically with active areas on the abraded metal. The outcome of this process is a unique oil retaining property that significantly improves the metal surface properties. The organic nanolayer that is formed bonds to the metal substrate by strong ionic forces during the lapping process. The formation of these strong chemical bonds aids the adhesion between the polymeric molecules and the metal surface.

The surface texturing process involves introducing recesses onto the surface of the metal. These recesses can be either grooves made by plastic deformation or laser dimples. The recesses in the metal surface act as oil batteries by retaining oil and making it available to the surface in periods of insufficient oil supply. This provides the necessary lubrication among the mechanical parts of the vehicle in oil starvation conditions, such as when an engine is started. These recesses also funnel the metal debris that is created during sliding friction.

####

About FriCSo
FriCSo Friction Control Solutions ( http://www.fricso.com ) was founded in 2003 by Drs. Boris Shamshidov and Alexander Ignatovsky, two scientists specializing in tribology, the science of friction, lubrication and wear. The company's headquarters are located in Farmington Hills, MI, near Detroit the heart of the US automotive industry. The R&D center is located in the Tirat Carmel Industrial Zone, Israel.

In 2007, FriCSo plans to raise about $10 million in a new round of financing. The funds will be used to open the company's new production facility, and to expand its marketing and sales activities in the US, Europe and Asia Pacific. The company raised $7.5 million in two previous rounds. Investors included institutional and private investors, led by Aviv Venture Capital.

For more information, please click here

Contacts:
David Kanaan
Kanaan Public Relations
Tel.: +972-3-5408188

Copyright © FriCSo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Announcements

Leti and Taiwanese Tech Organizations Sponsoring Workshop in Taipei on MEMS, IoT, Smart Lighting Applications, System Reliability & Security September 28th, 2016

Oxford Instruments systems now facilitate water purification technology September 27th, 2016

Dr Barbara Armbruster promoted to Worldwide Sales and Marketing Director for XEI Scientific September 27th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Environment

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Mathematical nanotoxicoproteomics: Quantitative characterization of effects of multi-walled carbon nanotubes: This research article by Dr. Subhash Basak et al. will be published in Current Computer-Aided Drug Design, Volume 12, 2016 September 2nd, 2016

Nanofur for oil spill cleanup: Materials researchers learn from aquatic ferns: Hairy plant leaves are highly oil-absorbing / publication in bioinspiration & biomimetics / video on absorption capacity August 25th, 2016

Researchers watch catalysts at work August 19th, 2016

Energy

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Researchers at the Catalan Institute of Nanoscience and Nanotechnology show that bending semiconductors generates electricity September 26th, 2016

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

New perovskite research discoveries may lead to solar cell, LED advances September 12th, 2016

Automotive/Transportation

Carbon-coated iron catalyst structure could lead to more-active fuel cells September 15th, 2016

GLOBALFOUNDRIES Launches Embedded MRAM on 22FDX Platform: High-performance embedded non-volatile memory solution is ideally suited for emerging applications in advanced IoT and automotive September 15th, 2016

GLOBALFOUNDRIES Extends FDX Roadmap with 12nm FD-SOI Technology: 12FDXTM delivers full-node scaling, ultra-low power, and software-controlled performance on demand September 8th, 2016

Imperial College use Kleindiek micromanipulators in their research into electrochemical energy devices September 6th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic