Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New Nanolayer-based Technology Highly Reduces Engine Emission and Improves Fuel Consumption

Abstract:
Engine Test Conducted by the Technion:
FriCSo's Technology Highly Reduces Particulate Emission and Improves Fuel Consumption

New Nanolayer-based Technology Highly Reduces Engine Emission and Improves Fuel Consumption

Farmington Hills, MI | Posted on April 16th, 2007

FriCSo, Inc. ( http://www.fricso.com ), a developer and manufacturer of environmentally friendly technology and polymer-based devices that create a friction reduction nanolayer on moving parts, today announced that a test conducted by the Technion - Israel Institute of Technology found that FriCSo's Surface Engineering Treatment (SET) highly reduces particulate matter emissions, increases engine mechanical efficiency, and reduces fuel consumption.

FriCSo's breakthrough SET technology reduces the friction between moving parts using an innovative polymer-based machining process. SET creates an oil-retaining organic nanolayer chemically bonded to the metal surface, increases surface hardness and improves surface topography.

The test was performed on a 4-cylinder tractor diesel engine. The test was conducted by the Internal Combustion Engine Laboratory of the Technion's Mechanical Engineering Faculty. The test consisted of two runs: the first (which served as a baseline) - without any treatment of surfaces, and the second - after replacing the engine's main friction parts (cylinder liners, piston pins, rocker shafts, valves etc.) with new parts treated with FriCSo's SET.

The test results show that using the SET treatment leads to a fuel consumption reduction of 0.4%-4%, depending on engine RPM and load. SET treatment resulted in a substantial decrease of particulate matter emissions (43%-46%), while oil consumption was reduced by 48% compared with the baseline case. In addition, SET treatment led to an improvement of about 2% in the engine's mechanical efficiency.

"This test is further proof that FriCSo's SET introduces a new era in energy efficiency and environmental protection," said Amir Weisberg, CEO of FriCSo, Inc. "FriCSo is setting a new standard for friction and wear reduction, and enables manufacturers to offer superior products to meet market demand, with unprecedented performance."

A copy of the test report can be obtained by contacting Danny Weiss, FriCSo's VP Business Development, at +972-4-858-0008, ext. 104 or emailing him at

FriCSo was recently awarded the 2006 Frost & Sullivan Technology Innovation Award in the field of automotive coatings. According to S. Sumithra, Frost & Sullivan research analyst, "FriCSo's solution is an innovative device, which could potentially replace existing non-environment friendly coatings in the field of automotive coatings." FriCSo's surface treatment delivers coating-like performance.

The Surface Engineering Treatment (SET) comprises one or two processes:
- High performance polymer lapping as a single treatment.
- Two-step treatment consisting of surface texturing using vibro-grooving followed by polymer lapping.

FriCSo's lapping process uses a uniquely designed consumable, patented polymer device. During the lapping process, small fragments torn from the polymeric lapping device with reactive polar groups react chemically with active areas on the abraded metal. The outcome of this process is a unique oil retaining property that significantly improves the metal surface properties. The organic nanolayer that is formed bonds to the metal substrate by strong ionic forces during the lapping process. The formation of these strong chemical bonds aids the adhesion between the polymeric molecules and the metal surface.

The surface texturing process involves introducing recesses onto the surface of the metal. These recesses can be either grooves made by plastic deformation or laser dimples. The recesses in the metal surface act as oil batteries by retaining oil and making it available to the surface in periods of insufficient oil supply. This provides the necessary lubrication among the mechanical parts of the vehicle in oil starvation conditions, such as when an engine is started. These recesses also funnel the metal debris that is created during sliding friction.

####

About FriCSo
FriCSo Friction Control Solutions ( http://www.fricso.com ) was founded in 2003 by Drs. Boris Shamshidov and Alexander Ignatovsky, two scientists specializing in tribology, the science of friction, lubrication and wear. The company's headquarters are located in Farmington Hills, MI, near Detroit the heart of the US automotive industry. The R&D center is located in the Tirat Carmel Industrial Zone, Israel.

In 2007, FriCSo plans to raise about $10 million in a new round of financing. The funds will be used to open the company's new production facility, and to expand its marketing and sales activities in the US, Europe and Asia Pacific. The company raised $7.5 million in two previous rounds. Investors included institutional and private investors, led by Aviv Venture Capital.

For more information, please click here

Contacts:
David Kanaan
Kanaan Public Relations
Tel.: +972-3-5408188

Copyright © FriCSo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Announcements

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Environment

Rice U.'s one-step catalyst turns nitrates into water and air: NSF-funded NEWT Center aims for catalytic converter for nitrate-polluted water January 5th, 2018

'Quantum material' has shark-like ability to detect small electrical signals December 20th, 2017

Silicon Sense first to achieve EPA approval to import detonation nanodiamonds to US: Nanodiamond additives can significantly improve the performance of metal finishing, polymer thermal and mechanical compounds, polymer coatings, CMP polishing and a range of other applications November 29th, 2017

Report highlights opportunities and risks associated with synthetic biology and bioengineering November 22nd, 2017

Energy

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

Rice U.'s one-step catalyst turns nitrates into water and air: NSF-funded NEWT Center aims for catalytic converter for nitrate-polluted water January 5th, 2018

Tweaking quantum dots powers-up double-pane solar windows: Engineered quantum dots could bring down the cost of solar electricity January 2nd, 2018

Automotive/Transportation

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

STMicroelectronics Selects GLOBALFOUNDRIES 22FDX to Extend Its FD-SOI Platform and Technology Leadership : GFs FDX technology will enable ST to deliver high-performance, low-power products for next-generation consumer and industrial applications January 9th, 2018

Study boosts hope for cheaper fuel cells: Rice University researchers show how to optimize nanomaterials for fuel-cell cathodes January 6th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project