Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers Create Smallest Organic Light-emitters

Abstract:
A Cornell team of researchers has produced microscopic 'nanolamps' -- light-emitting nanofibers about the size of a virus or the tiniest of bacteria. The potential applications are in flexible electronic products, which are being made increasingly smaller.

Researchers Create Smallest Organic Light-emitters

Ithaca, NY | Posted on April 12th, 2007

To help light up the nanoworld, a Cornell interdisciplinary team of researchers has produced microscopic "nanolamps" -- light-emitting nanofibers about the size of a virus or the tiniest of bacteria.

In a collaboration of experts in organic materials and nanofabrication, researchers have created one of the smallest organic light-emitting devices to date, made up of synthetic fibers just 200 nanometers wide (1 nanometer is one-billionth of a meter). The potential applications are in flexible electronic products, which are being made increasingly smaller.

The fibers, made of a compound based on the metallic element ruthenium, are so small that they are less than the wavelength of the light they emit. Such a localized light source could prove beneficial in applications ranging from sensing to microscopy to flat-panel displays.

The work, published in the February issue of Nano Letters, was a collaboration of nine Cornell researchers, including first author José M. Moran-Mirabal, an applied physics Ph.D. student; Héctor Abruña, the E.M. Chamot Professor of Chemistry and Chemical Biology; George Malliaras, associate professor of materials science and engineering and director of the Cornell NanoScale Facility; and Harold Craighead, the C.W. Lake Jr. Professor of Engineering and director of the National Science Foundation-funded Nanobiotechnology Center.

Using a technique called electrospinning, the researchers spun the fibers from a mixture of the metal complex ruthenium tris-bipyridine and the polymer polyethylene oxide. They found that the fibers give off orange light when excited by low voltage through micro-patterned electrodes -- not unlike a tiny light bulb.

"Imagine you have a light bulb that is extremely small," said Malliaras, an organic materials expert. "Then you can use the bulb to illuminate objects that you wouldn't be able to see otherwise."

Craighead's research group, which focuses on nanostructures and devices, supplied the expertise on the electrospinning technique.

The technique, explained Moran-Mirabal, who works in Craighead's laboratory, can be compared with pouring syrup on a pancake on a rotating table. As the syrup is poured, it forms a spiraling pattern on the flat pancake, which in electrospinning is the substrate with micropatterned gold electrodes. The syrup would be the solution containing the metal complex-polymer mixture in solvent. A high voltage between a microfabricated tip and the substrate ejects the solution from the tip, Moran-Mirabal said, and forms a jet that is stretched and thinned. As the solvent evaporates, the fiber hardens, laying down a solid fiber on the substrate.

As scientists look for ways to innovate -- and shrink -- electronics, there is much interest in organic light-emitting devices because they hold promise for making panels that can emit light but are also flexible, said Moran-Mirabal.

"One application of organic light-emitting devices could be integration into flexible electronics," he said.

The research also shows that these tiny light-emission devices can be made with simple fabrication methods. Compared with traditional methods of high-resolution lithography, in which devices are etched onto pieces of silicon, electrospinning requires almost no fabrication and is simpler to do.

The durability of organic electronics is still under investigation, and this recently completed research is no exception, Craighead said.

"The current interest is in the ease with which this material can be made into very small light-emitting fibers," he said. "Its ultimate utility, I think, will depend on how well it stands up to subsequent processing and use."

Other co-authors on the work are graduate students Jason D. Slinker, John A. DeFranco, Scott S. Verbridge, Samuel Flores-Torres and CNF staff member Rob Ilic.

####

About Corne
The strategic plan for research at Cornell can be summed up simply: Be the best at what we undertake to do. The research enterprise supports university research priorities: the New Life Sciences; cross-college collaborations; and enabling research areas--computing and information sciences, genomics, advanced materials, and nanoscience. We build on our strengths when creating programs, recruiting faculty, purchasing equipment, and supporting interdisciplinary programs. Cornell research is committed to knowledge transfer and engages in technology transfer and economic development activities that benefit local, regional, national, and international constituents.

For more information, please click here

Contacts:
Contact: Blaine Friedlander
(607) 254-8093

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanoelectronics

Researchers “iron out” graphene’s wrinkles: New technique produces highly conductive graphene wafers April 3rd, 2017

A big leap toward tinier lines: Self-assembly technique could lead to long-awaited, simple method for making smaller microchip patterns March 27th, 2017

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

UC researchers use gold coating to control luminescence of nanowires: University of Cincinnati physicists manipulate nanowire semiconductors in pursuit of making electronics smaller, faster and cheaper March 17th, 2017

Discoveries

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

Announcements

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

Video captures bubble-blowing battery in action: Researchers propose how bubbles form, could lead to smaller lithium-air batteries April 26th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project