Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Researchers Create Smallest Organic Light-emitters

Abstract:
A Cornell team of researchers has produced microscopic 'nanolamps' -- light-emitting nanofibers about the size of a virus or the tiniest of bacteria. The potential applications are in flexible electronic products, which are being made increasingly smaller.

Researchers Create Smallest Organic Light-emitters

Ithaca, NY | Posted on April 12th, 2007

To help light up the nanoworld, a Cornell interdisciplinary team of researchers has produced microscopic "nanolamps" -- light-emitting nanofibers about the size of a virus or the tiniest of bacteria.

In a collaboration of experts in organic materials and nanofabrication, researchers have created one of the smallest organic light-emitting devices to date, made up of synthetic fibers just 200 nanometers wide (1 nanometer is one-billionth of a meter). The potential applications are in flexible electronic products, which are being made increasingly smaller.

The fibers, made of a compound based on the metallic element ruthenium, are so small that they are less than the wavelength of the light they emit. Such a localized light source could prove beneficial in applications ranging from sensing to microscopy to flat-panel displays.

The work, published in the February issue of Nano Letters, was a collaboration of nine Cornell researchers, including first author José M. Moran-Mirabal, an applied physics Ph.D. student; Héctor Abruña, the E.M. Chamot Professor of Chemistry and Chemical Biology; George Malliaras, associate professor of materials science and engineering and director of the Cornell NanoScale Facility; and Harold Craighead, the C.W. Lake Jr. Professor of Engineering and director of the National Science Foundation-funded Nanobiotechnology Center.

Using a technique called electrospinning, the researchers spun the fibers from a mixture of the metal complex ruthenium tris-bipyridine and the polymer polyethylene oxide. They found that the fibers give off orange light when excited by low voltage through micro-patterned electrodes -- not unlike a tiny light bulb.

"Imagine you have a light bulb that is extremely small," said Malliaras, an organic materials expert. "Then you can use the bulb to illuminate objects that you wouldn't be able to see otherwise."

Craighead's research group, which focuses on nanostructures and devices, supplied the expertise on the electrospinning technique.

The technique, explained Moran-Mirabal, who works in Craighead's laboratory, can be compared with pouring syrup on a pancake on a rotating table. As the syrup is poured, it forms a spiraling pattern on the flat pancake, which in electrospinning is the substrate with micropatterned gold electrodes. The syrup would be the solution containing the metal complex-polymer mixture in solvent. A high voltage between a microfabricated tip and the substrate ejects the solution from the tip, Moran-Mirabal said, and forms a jet that is stretched and thinned. As the solvent evaporates, the fiber hardens, laying down a solid fiber on the substrate.

As scientists look for ways to innovate -- and shrink -- electronics, there is much interest in organic light-emitting devices because they hold promise for making panels that can emit light but are also flexible, said Moran-Mirabal.

"One application of organic light-emitting devices could be integration into flexible electronics," he said.

The research also shows that these tiny light-emission devices can be made with simple fabrication methods. Compared with traditional methods of high-resolution lithography, in which devices are etched onto pieces of silicon, electrospinning requires almost no fabrication and is simpler to do.

The durability of organic electronics is still under investigation, and this recently completed research is no exception, Craighead said.

"The current interest is in the ease with which this material can be made into very small light-emitting fibers," he said. "Its ultimate utility, I think, will depend on how well it stands up to subsequent processing and use."

Other co-authors on the work are graduate students Jason D. Slinker, John A. DeFranco, Scott S. Verbridge, Samuel Flores-Torres and CNF staff member Rob Ilic.

####

About Corne
The strategic plan for research at Cornell can be summed up simply: Be the best at what we undertake to do. The research enterprise supports university research priorities: the New Life Sciences; cross-college collaborations; and enabling research areas--computing and information sciences, genomics, advanced materials, and nanoscience. We build on our strengths when creating programs, recruiting faculty, purchasing equipment, and supporting interdisciplinary programs. Cornell research is committed to knowledge transfer and engages in technology transfer and economic development activities that benefit local, regional, national, and international constituents.

For more information, please click here

Contacts:
Contact: Blaine Friedlander
(607) 254-8093

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanoelectronics

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Carbodeon enables 20 percent increase in polymer thermal filler conductivity with 0.03 wt.% nanodiamond additive at a lower cost than with traditional fillers: Improved materials and processes enable nanodiamond cost reductions of up to 70 percent for electronics and LED app July 9th, 2014

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2014 conference July 8th, 2014

Discoveries

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

More than glitter: Scientists explain how gold nanoparticles easily penetrate cells, making them useful for delivering drugs July 21st, 2014

Carbyne morphs when stretched: Rice University calculations show carbon-atom chain would go metal to semiconductor July 21st, 2014

Announcements

Oxford Instruments Asylum Research Opens an Atomic Force Microscopy Demonstration Lab in Mumbai, India July 21st, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

More than glitter: Scientists explain how gold nanoparticles easily penetrate cells, making them useful for delivering drugs July 21st, 2014

Iran to Host 1st Asian Congress on Nanostructures on Kish Island July 21st, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE