Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Go With the Flow: Penn Researchers Show How Nanocylinders deliver medicine better than nanospheres

Abstract:
Researchers at the University of Pennsylvania School of Medicine & School of Engineering and Applied Science have discovered a better way to deliver drugs to tumors by using a cylindrical-shaped carrier.

In this study, the research team used skinny cylindrical nanoparticles composed of synthetic polymers to deliver the anticancer drug paclitaxel to a human lung tumor tissue implanted in mice. Because the cylinders remained in circulation for up to one week after injection, they also delivered a more effective dose, killing more cancer cells and shrinking the tumors to a much greater extent.

Spherical nanoparticles typically only stay in circulation for a few hours.

This discovery is also helping scientists understand why some viruses, such as cylinder-shaped viruses like Ebola and H5N1 influenza, are so effective.

This study appeared online in Nature Nanotechnology in advance of print publication in March 2007.

Go With the Flow: Penn Researchers Show How Nanocylinders deliver medicine better than nanospheres

Philadelphia, PA | Posted on April 5th, 2007

Researchers at the University of Pennsylvania School of Medicine & School of Engineering and Applied Science have discovered a better way to deliver drugs to tumors. By using a cylindrical-shaped carrier they were able sustain delivery of the anticancer drug paclitaxel to an animal model of lung cancer ten times longer than that delivered on spherical-shaped carriers. These findings have implications for drug delivery as well as for better understanding cylinder-shaped viruses like Ebola and H5N1 influenza.

This study appeared online in Nature Nanotechnology in advance of print publication in March 2007.

"These are particles that go with the flow," says Dennis E. Discher, PhD, Professor of Chemical and Biomolecular Engineering at Penn's Institute for Medicine and Engineering. "The blood stream is constantly pumping, and these cylindrical nanoparticles align with the flow and persist in circulation considerably longer than any known spherical particles."

In this study, the research team used skinny cylindrical nanoparticles composed of synthetic polymers to deliver the anticancer drug paclitaxel to a human lung tumor tissue implanted in mice. The cylinders have diameters as small as 20 nm and lengths approaching the size of blood cells. The paclitaxel shrunk the tumors and, because the cylinders remained in circulation for up to one week after injection, they delivered a more effective dose, killing more cancer cells and shrinking the tumors to a much greater extent. Spherical nanoparticles typically only stay in circulation for a few hours.

The research team used nanoparticles that contained one water-loving chain of a common polymer called polyethyleneglycol (PEG). PEGs are commonly found in everyday items like shampoo and some foods. Although synthetic, PEGs have already been approved as biocompatible to humans, making them ideal carriers, note the researchers.

While these findings could impact the way lung cancer is treated, this discovery of how to more effectively deliver drugs to the body could also improve the treatment of such other illnesses as cardiovascular disease as well as other types of cancers.

This discovery is also helping scientists understand why some viruses are so effective. "Cylindrical delivery systems exist in nature, with two prime examples being the Ebola virus and the H5N1 Influenza virus," says Discher. "These findings can help us understand how this shape evolved in nature and the advantages of using it for treating people."

In addition to Discher, Yan Geng, Paul Dalhaimer, Shenshen Cai, Richard Tsai, and Manorama Tewari, all of Penn, and Tamara Minko of Rutgers University, are co-authors. The National Institute of Biomedical Imaging and BioEngineering provided funding for this research.

####

About University of Pennsylvania
PENN Medicine is a $2.9 billion enterprise dedicated to the related missions of medical education, biomedical research, and high-quality patient care. PENN Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System.

Penn's School of Medicine is ranked #2 in the nation for receipt of NIH research funds; and ranked #3 in the nation in U.S. News & World Report's most recent ranking of top research-oriented medical schools. Supporting 1,400 fulltime faculty and 700 students, the School of Medicine is recognized worldwide for its superior education and training of the next generation of physician-scientists and leaders of academic medicine.
The University of Pennsylvania Health System includes three hospitals, all of which have received numerous national patient-care honors [Hospital of the University of Pennsylvania; Pennsylvania Hospital, the nation's first hospital; and Penn Presbyterian Medical Center]; a faculty practice plan; a primary-care provider network; two multispecialty satellite facilities; and home care and hospice.

For more information, please click here

Contacts:
Karen Kreeger
(215) 349-5658
Department of Communications
P: (215) 662-2560
F: (215) 349-8312

Copyright © University of Pennsylvania

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

Nanobiotix Appoints Thierry Otin as Head of Manufacturing and Supply April 15th, 2014

PAM-XIAMEN Offers UV LED wafer April 15th, 2014

Nanocrystalline cellulose modified into an efficient viral inhibitor April 15th, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Announcements

Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting April 15th, 2014

A molecular approach to solar power: Switchable material could harness the power of the sun ó even when itís not shining April 15th, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Biologists Develop Nanosensors to Visualize Movements and Distribution of Plant Stress Hormone April 15th, 2014

Human Interest/Art

Harry Potter-style invisibility cloaks: A real possibility next Christmas? Forget socks and shaving foam, the big kids of tomorrow want an invisible cloak for Christmas December 19th, 2013

Chicago Awareness Organization First Not-for-Profit to Sponsor Dog Training to Detect Ovarian Cancer Odorants December 12th, 2013

ZEISS Microscopes used to create images for Art Exhibit at Midway Airport: Art of Science: Images from the Institute for Genomic Biology October 25th, 2013

New potential for touch screens found at your fingertips September 17th, 2013

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE