Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Clarkson Physics Prof Synthesizes Brightest Fluorescent Particles Ever

Abstract:
Microscopic Particles Have Applications in Medicine, Forensic Science, Environmental Protection

Clarkson Physics Prof Synthesizes Brightest Fluorescent Particles Ever

Potsdam, NY | Posted on April 3rd, 2007

Clarkson University Physics Professor Igor Sokolov and his team have discovered a method of making the brightest ever synthesized fluorescent silica particles.

These nanostructured macroscopic silica particles have potential applications in medicine, forensic science and environmental protection, among many other uses. Sokolov's research is published in the March 5 issue of the scientific journal Small. You can see the full article at
http://www3.interscience.wiley.com/cgi-bin/fulltext/114088575/HTMLSTART .

Sokolov, along with Ph.D. student Yaroslav Y. Kievsky (now a research fellow at the National Research Council of Canada) and Clarkson undergraduate student Jason M. Kaszpurenko, has created a process to physically entrap a large number of organic fluorescent molecules inside a nanoporous silica matrix. The fluorescence of these particles is 170 times brighter than any particles of similar size created so far. The previous record was reached using quantum dots.

In fluorescence, an initial ignition light energizes molecules, then the molecules reemit the light with a different color. This phenomenon can be used in many different applications because it is easily detectable, using optical filters to remove the ignition light, leaving only the particles' light visible.

There are a multitude of applications for these microscopic "flashlights." These particles, which are less than 1/10th the size of a human hair, could be used like holograms to prove a product's authenticity, imbedded in various objects or fabric for tracking, or used like an "invisible ink" to prove that someone touched an object.

"You could use them like a UPC barcode, encoded and deciphered not in terms of light, but in terms of colors," says Sokolov. "Using only commercially available dyes, you could create and track about 100 trillion combinations of these 'UPC' color barcodes. Because these particles are so bright, it is possible to detect even a single colored particle easily."

There are also potential applications in environmental protection -- dispersing the particles into groundwater to see where it flows to or tracking sources of air pollution. "You could spray these particles into the air like dust," says Sokolov, "and easily collect them because they are so highly visible."

Sokolov sees an ultra-bright future for these fluorescent particles. Down the road he envisions particles that can change color in different acidities. "We have already patented particles that can change color because of temperature change," he says. "The next step is to create a particle that would be a whole laboratory, simultaneously detecting many chemical environment factors -- temperature, acidity, metal ions, etc.

"After that, we could make a nanobot, or smart drug, that would actively react to its environment, and be used, for example, in fighting cancer. Tumor tissue has a higher acidity than the surrounding tissue. As soon as the injected nanobot encountered the high acidity of a tumor, it would start releasing the drug it carries to kill the cancer."

Apart from a family of various sensors, Sokolov's team is now working on scaling down the size of these particles to nanosize (a thousand times smaller than now). "This should have a significant impact in biology," says Sokolov. "For example, you can create particles of different colors. These particles can be made 'sticky' to particular biological molecules inside cells. Then you can see those molecules easily. This fluorescent labeling helps to identify diseased cells and may show exactly what is causing the disease."

Sokolov works on these projects together with postdoctoral fellow Sajo P. Naik and graduate student Dmitry Volkov. Two undergraduate students, Jason M. Kaszpurenko and James O. Benson, both seniors majoring in physics, are also part of the team. "At Clarkson, there are opportunities for undergraduate students in frontier science work like this," says Sokolov. "They are more than welcome to come and work with us."

In fact, Kaszpurenko is a coauthor of the Small journal article and a co-inventor of a patent. Due in part to this undergraduate research experience, Kaszpurenko has been accepted for graduate work at UC Davis, where he will continue his physics studies.

Sokolov received a Ph.D. from Soviet Bureau of Standards (Russian NIST), Russia, and completed his postdoctoral work at the University of Toronto. His research interests include biological physics, Functional Nano/Biomaterials and Interfaces, and atomic force microscopy. Find out more at http://www.clarkson.edu/~isokolov .

Sokolov is part of Clarkson's Center for Advanced Materials Processing (CAMP), which is dedicated to developing Clarkson's research and educational programs in high-technology materials processing and focused on industrial concerns and meeting industrial needs. The Center is built on Clarkson's recognized expertise in colloid and surface science and fine particle technology.

####

About Clarkson University
Clarkson University, located in Potsdam, New York, is a private, nationally ranked university with a reputation for developing innovative leaders in engineering, business, the sciences, health sciences and the humanities. At Clarkson, 3,000 high-ability students excel in an environment where learning is not only positive, friendly and supportive but spans the boundaries of traditional disciplines and knowledge. Faculty achieves international recognition for their research and scholarship and connects students to their leadership potential in the marketplace through dynamic, real-world problem solving.

For more information, please click here

Contacts:
Michael P. Griffin
director of News & Digital Content Services
315-268-6716

Copyright © Clarkson University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Molecular Machines

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Tiny bio-robot is a germ suited-up with graphene quantum dots March 24th, 2015

New remote control for molecular motors: It is now theoretically possible to remotely control the direction in which magnetic molecules spin, which opens the door to designing applications based on molecular motors March 16th, 2015

Nanomedicine

‘Oxford Instruments Young Nanoscientist India Award 2015’ to Prof. Arindam Ghosh April 20th, 2015

Iranian Female Professor Awarded UNESCO Medal in Nanoscience April 20th, 2015

Happily ever after: Scientists arrange protein-nanoparticle marriage: New biotech method could lead to development of HIV vaccine, targeted cancer treatment April 20th, 2015

Optical resonance-based biosensors designed for medical applications April 18th, 2015

Sensors

‘Oxford Instruments Young Nanoscientist India Award 2015’ to Prof. Arindam Ghosh April 20th, 2015

Optical resonance-based biosensors designed for medical applications April 18th, 2015

MIT sensor detects spoiled meat: Tiny device could be incorporated into 'smart packaging' to improve food safety April 15th, 2015

Graphene pushes the speed limit of light-to-electricity conversion: Researchers from ICFO, MIT and UC Riverside have been able to develop a graphene-based photodetector capable of converting absorbed light into an electrical voltage at ultrafast timescales April 14th, 2015

Discoveries

Quantum model reveals surface structure of water: National Physical Laboratory, IBM and Edinburgh University have used a new quantum model to reveal the molecular structure of water's liquid surface April 20th, 2015

Happily ever after: Scientists arrange protein-nanoparticle marriage: New biotech method could lead to development of HIV vaccine, targeted cancer treatment April 20th, 2015

Nondestructive 3-D Imaging of Biological Cells with Sound April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Announcements

Introduction of the LVEM25 Low Voltage Electron Microscope April 21st, 2015

Nondestructive 3-D Imaging of Biological Cells with Sound April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Yale-NUS, NUS and UT Austin researchers establish theoretical framework for graphene physics: Making strides towards using graphene to create new electronic devices April 20th, 2015

Environment

Young NTU Singapore spin-off clinches S$4.3 million joint venture with Chinese commercial giant March 23rd, 2015

New processing technology converts packing peanuts to battery components March 22nd, 2015

EU Funded PCATDES Project has completed its half-period with success March 19th, 2015

Are current water treatment methods sufficient to remove harmful engineered nanoparticle? March 10th, 2015

Water

Quantum model reveals surface structure of water: National Physical Laboratory, IBM and Edinburgh University have used a new quantum model to reveal the molecular structure of water's liquid surface April 20th, 2015

Dais Analytic Corporation Appoints Eliza Wang to Board of Directors: Company's Newest Director Brings Expertise in Commercial and Legal Matters Both in the United States and China; Joins on the Heels of Successful Business Development Trade Mission to China April 18th, 2015

Iranian Scientists Produce Magnetic Recyclable Photocatalyst to Purify Polluted Water April 8th, 2015

Water makes wires even more nano: Rice University lab extends meniscus-mask process to make sub-10 nanometer paths April 6th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project