Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Cells selectively absorb short nanotubes

Abstract:
DNA-wrapped single-walled carbon nanotubes (SWCNTs) shorter than about 200 nanometers readily enter into human lung cells and so may pose an increased risk to health, according to scientists at the National Institute of Standards and Technology (NIST). The results of their laboratory studies appear in an upcoming issue of Advanced Materials.*

*M.L. Becker, J.A. Fagan, N.D. Gallant, B.J. Bauer, V. Bajpai, E.K. Hobbie, S.H. Lacerda, K. B. Migler and J.P. Jakupciak. Length-dependent uptake of DNA-wrapped single-walled carbon nanotubes. Advanced Materials, published on-line : 20 March 2007.

Cells selectively absorb short nanotubes

MD | Posted on March 30th, 2007

Eyed for uses ranging from electronic displays to fuel cells to water filtration, SWCNTs are tiny cylinders—essentially single-sheet rolls of carbon atoms. They are many times stronger than steel and possess superlative thermal, optical and electronic properties, but safety and biocompatibility remain an open question.

"Published data citing in vitro (outside the body) toxicity are particularly inconsistent and widely disputed," writes biomaterials scientist Matthew Becker and his NIST colleagues. Public concerns surrounding the environmental, health and safety impacts of SWCNTs could derail efforts to fast track the development of nanotubes for advanced technology applications. A significant hurdle in outlining the parameters contributing to nanotube toxicity is to prepare well-defined and characterized nanotube samples, as they typically contain a distribution of lengths, diameters, twists and impurities.

The team chose to isolate the effects of nanotube length. They first adsorbed short DNA molecules onto the nanotubes because this renders them soluble in water and allows them to be sorted and separated by length. The researchers then exposed human lung fibroblasts to solutions containing unsorted nanotubes. Regardless of the concentration levels, the cells did not absorb between about one-fourth and one-third of the SWCNTs in the solutions. Further examination of the results revealed that only short nanotubes made it into the cellular interior.

In the next phase of the research, the team exposed the cells to sorted nanotubes of controlled length. They found that tubes longer than about 200 nanometers were excluded from the cells and remained in solution. Cells exposed to the longer nanotube solutions did not undergo a decrease in metabolic activity, but cells exposed to nanotubes below that threshold absorbed them and, depending on the concentration level, died or showed other signs of toxicity. "Our results demonstrate that cellular uptake in these lung cells depends significantly on the length of the nanotubes," Becker explains. "This is the first of many steps in the critical goal of reducing health risk by de novo engineering of the nanotubes themselves."

####

For more information, please click here

Contacts:
Michael Baum

301-975-2763

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Discoveries

Seeing is bead-lieving: Rice University scientists create model 'bead-spring' chains with tunable properties July 28th, 2014

Measuring the Smallest Magnets July 28th, 2014

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Announcements

Measuring the Smallest Magnets July 28th, 2014

WITec to host the 11th Confocal Raman Imaging Symposium from September 29th - October 1st in Ulm, Germany July 28th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Safety-Nanoparticles/Risk management

NNCO Announces an Interactive Webinar: Progress Review on the Coordinated Implementation of the National Nanotechnology Initiative 2011 Environmental, Health, and Safety Research Strategy July 23rd, 2014

Development of an interactive tool for the implementation of environmental legislation for nanoparticles manufacturers July 4th, 2014

FDA issues guidance on use of nanotechnology in foods July 1st, 2014

Nano-coatings release almost no nano-particles: Silver in the washing machine June 30th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE