Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > News > It may be possible to store a bit of data on a single atom and retrieve it

March 30th, 2007

It may be possible to store a bit of data on a single atom and retrieve it

Abstract:
THE race in computing is a race to the bottom. Smaller components can do more in less space—and that applies both to processors that manipulate data and to memories that store them. Yet the urge to develop ever-smaller components suggests that, at some point, things will become so tiny that the effects of quantum mechanics start coming into play.

Often, this is regarded as a bad thing. It might, for example, allow electrons to leak to places where they are not wanted via a process called quantum tunnelling. Quantum effects can, however, also be beneficial, as a group of researchers writing in this week's Nature Nanotechnology demonstrate. Andrei Sokolov of the University of Nebraska and Bernard Doudin of the University of Strasbourg have shown how an individual "bit" of data—a one or a zero of the binary code used by computers—might be stored on a single atom.

Source:
economist.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Spintronics

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Atomic magnets using hydrogen and graphene April 27th, 2016

The light stuff: A brand-new way to produce electron spin currents - Colorado State University physicists are the first to demonstrate using non-polarized light to produce a spin voltage in a metal April 26th, 2016

Scientists push valleytronics 1 step closer to reality: Berkeley Lab and UC Berkeley researchers control a promising new way to encode electrons April 6th, 2016

Discoveries

New tool allows scientists to visualize 'nanoscale' processes May 4th, 2016

A compact, efficient single photon source that operates at ambient temperatures on a chip: Highly directional single photon source concept is expected to lead to a significant progress in producing compact, cheap, and efficient sources of quantum information bits for future appls May 3rd, 2016

Nuclear pores captured on film: Using an ultra fast-scanning atomic force microscope, researchers from the University of Basel have filmed 'living' nuclear pore complexes at work for the first time May 3rd, 2016

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

New tool allows scientists to visualize 'nanoscale' processes May 4th, 2016

Nuclear pores captured on film: Using an ultra fast-scanning atomic force microscope, researchers from the University of Basel have filmed 'living' nuclear pore complexes at work for the first time May 3rd, 2016

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Human Interest/Art

Scientists propose non-animal tools for assessing the toxicity of nanomaterials: Particle and Fibre Toxicology publishes recommendations from expert group meeting April 26th, 2016

Are humans the new supercomputer?Today, people of all backgrounds can contribute to solving serious scientific problems by playing computer games. A Danish research group has extended the limits of quantum physics calculations and simultaneously blurred the boundaries between mac April 14th, 2016

UCLA nanoscientists engage shoppers in fun conversations March 8th, 2016

Risk Analysis Publishes Non-Animal Strategy to Assess Nanomaterials February 24th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic