Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Bacterial response to oxidation studied as toxin barometer

Abstract:
Common bacteria with an overt reaction to toxins that cause oxidative stress show promise as a biosensor to predict public health threats.

Bacterial response to oxidation studied as toxin barometer

Blacksburg, VA | Posted on March 26th, 2007

At the 233rd American Chemical Society national meeting in Chicago March 25-29, researchers from Virginia Tech and the Edward Via Virginia College of Osteopathic Medicine (VCOM) will report their work on a bacteria biosensor prototype and correlations to brain tissue damage.

Many environmental toxins in water, such as pesticides, heavy metals, and PCBs, kill through oxidative stress mechanisms, said Bev Rzigalinski, a pharmacologist with VCOM. Oxidative stress is caused by unbalanced molecules called free radicals and other oxidation-promoting molecules that damage cells and genetic material by removing electrons.

Gram negative heterotrophic bacteria "spit" potassium in the presence of oxidative stress, said Nancy Love, a professor in civil and environmental engineering and an adjunct in biology at Virginia Tech.

"More like ‘sweat' potassium," said Kaoru Ikuma of Nishinomiya, Japan, an environmental engineering graduate student at Virginia Tech.

However you describe the process for the non-scientist, the bacteria's response of pushing potassium out of their cells in the presence of oxidative stress is called the glutathione-gated potassium efflux (GGKE) response. "Typical bacterial you find anywhere will have this response, but these particular bacteria really spew potassium," said Love.

And Rzigalinski was pleased to hear it. Perhaps the GGKE response could be used to predict potential damage to animal and human cells. "But bacteria are different from mammalian cells," said Rzigalinski, who is focused on neuroscience, particularly brain injury and aging, and nanotechnology (http://nanoneuro.vcom.vt.edu/).

"We wanted to see if the same type of marker would work with human cells, particularly brain cells. We used the bacteria to calibrate a sensor," she said. "The bacteria are easier to prepare and more robust than using mammalian cells, such as rat brain tissue. Brain tissue is the most sensitive to toxins. We wanted to relate the bacteria response to cell response, like a barometer."

"And we saw that it corresponds well," said Ikuma. "Something that sets the bacteria off also sets the cells off.

Using the toxin, N-ethylmaleimide, as a constant, Ikuma and Rzigalinski are taking measurements and seeing correlations of GGKE response to mitochondrial damage in cell cultures.

"If we can create a library of cellular response, we might have either a generic or a specific predictor," said Brian Love, professor of materials science and engineering at Virginia Tech. "We don't know yet because we haven't tested other cell types."

Brian Love has been assisting with the research team's attempts to immobilize the sentinel bacteria as part of a biosensor design strategy.

Nancy Love ( http://www.cee.vt.edu/people/love.html ) began her work with microbes by finding organisms that could be used to digest waste in wastewater treatment plants. When she noticed that the useful organisms were being put out of commission by various toxins in the water, she and a student went to a conference of microbiologists who work with stress systems. "We saw a connection between what they were seeing in food processing and what we were seeing in wastewater systems."

She discovered that the ubiquitous Gram negative heterotrophic bacteria were being used to monitor food processing systems - so why not wastewater?

After doing work to develop what Brian Love describes as "bacterial canaries" as an early warning system to protect the microbes in wastewater systems, Nancy Love began to look for other applications, from water monitoring in general to specific health monitoring in other biological systems in the environment, and met Rzigalinski, who is focused on neuroscience, particularly brain injury and aging, and nanotechnology ( http://nanoneuro.vcom.vt.edu/ ).

"It is a good sensor because it measures biological effect rather than concentrations," Rzigalinski said. "So we can measure oxidative damage when we stick the sensor in the water, not individual concentrations of individual chemicals. It also announces the presence of an oxidative toxin you haven't identified."

"We don't have to have 20 sensors for 20 toxins. We can sense the presence of any oxidative toxin," Love said.

Ikuma, who was an undergraduate biology student at Virginia Tech when she began working with Love, has now come full circle from a biology student working on a civil engineering research project to an engineering student working on a biology project. She will deliver the paper, "Predicting the public health impact of oxidative toxins using a bacterial glutathione-gated potassium efflux stress response biosensor" (GEOC 51) at 3:25 p.m., Monday, March 26, in McCormick Place North room N427A. Rzigalinski and Nancy Love are the co-authors.

The research is funded by the National Institute of Standards and Technology and the National Institute on Aging. Early support was provided by the National Science Foundation and U.S. Environmental Protection Agency - the latter in collaboration with Brian Love.

####

About Virginia Tech
Founded in 1872 as a land-grant college named Virginia Agricultural and Mechanical College, Virginia Tech is now a comprehensive, innovative research university with the largest full-time student population in Virginia. Through a combination of its three missions of learning, discovery, and engagement, Virginia Tech continually strives to accomplish the charge of its motto: Ut Prosim (That I May Serve).

For more information, please click here

Contacts:
Susan Trulove

540-231-5646

Copyright © Virginia Tech

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Sensors

Making robots more human April 29th, 2015

Simultaneous Measurement of Drugs Made Possible by Nanosensors April 29th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

ORNL reports method that takes quantum sensing to new level April 23rd, 2015

Discoveries

From brittle to plastic in 1 breath: Rice University theorists show environments can alter 2-D materials' basic properties May 4th, 2015

Nanoparticles in consumer products can significantly alter normal gut microbiome May 4th, 2015

Antibacterial Ceramic Nanoparticles, Appropriate Material for Medical Devices May 3rd, 2015

ORNL researchers probe chemistry, topography and mechanics with one instrument May 2nd, 2015

Announcements

Defects in atomically thin semiconductor emit single photons: Researchers create optically active quantum dots in 2-D semiconductor for the first time; may have applications for integrated photonics May 4th, 2015

Arrowhead to Report Fiscal 2015 Second Quarter Financial Results May 4th, 2015

From brittle to plastic in 1 breath: Rice University theorists show environments can alter 2-D materials' basic properties May 4th, 2015

Nanoparticles in consumer products can significantly alter normal gut microbiome May 4th, 2015

Environment

Chemists strike nano-gold: 4 new atomic structures for gold nanoparticle clusters: Research builds upon work by Nobel Prize-winning team from Stanford University April 28th, 2015

Nanoparticles Used to Improve Mechanical, Thermal Properties of Cellulose Fibers April 23rd, 2015

Young NTU Singapore spin-off clinches S$4.3 million joint venture with Chinese commercial giant March 23rd, 2015

New processing technology converts packing peanuts to battery components March 22nd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project