Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Linear arrays of nanotubes offer path to high-performance electronics

Abstract:
Despite the attractive electrical properties and physical features of single-walled carbon nanotubes, incorporating them into scalable integrated circuits has proven to be a challenge because of difficulties in manipulating and positioning these molecular scale objects and in achieving sufficient current outputs.

Linear arrays of nanotubes offer path to high-performance electronics

CHAMPAIGN, IL | Posted on March 25th, 2007

Now, researchers at the University of Illinois, Lehigh University and Purdue University have developed an approach that uses dense arrays of aligned and linear nanotubes as a thin-film semiconductor material suitable for integration into electronic devices.

The nanotube arrays can be transferred to plastic and other unusual substrates for applications such as flexible displays, structural health monitors and heads-up displays. The arrays also can be used to enhance the performance of devices built with conventional silicon-based chip technology.

"The aligned arrays represent an important step toward large-scale integrated nanotube electronics," said John A. Rogers, a Founder Professor of Materials Science and Engineering at Illinois, and corresponding author of a paper accepted for publication in the journal Nature Nanotechnology, and posted on its Web site.

To create nanotube arrays, the researchers begin with a wafer of single-crystal quartz, on which they deposit thin strips of iron nanoparticles. The iron acts as a catalyst for the growth of carbon nanotubes by chemical vapor deposition. As the nanotubes grow past the iron strips, they lock onto the quartz crystal, which then aligns their growth.

The resulting linear arrays consist of hundreds of thousands of nanotubes, each approximately 1 nanometer in diameter (a nanometer is 1 billionth of a meter), and up to 300 microns in length (a micron is 1 millionth of a meter). The nanotubes are spaced approximately 100 nanometers apart.

The arrays function as an effective thin-film semiconductor material in which charge moves independently through each of the nanotubes. In this configuration, the nanotubes can be integrated into electronic devices in a straightforward fashion by conventional chip-processing techniques.

A typical device incorporates approximately 1,000 nanotubes, and can produce current outputs 1,000 times higher than those of previously reported devices that incorporate just a single nanotube. Many devices can be built from each array, with good device-to-device uniformity. Detailed theoretical analysis of these unusual devices reveals many aspects of their operation.

Using the arrays, the researchers built and tested a number of transistors and logic gates, and compared the properties of nanotube arrays with those of individual nanotubes.

"This is the first study that shows properties in scalable device configurations that approach the intrinsic properties of the tubes themselves, as inferred from single-tube studies," said Rogers, who also is a researcher at the university's Beckman Institute.

Nanotube arrays aren't likely to replace silicon, Rogers said, but could be added to a silicon chip and exploited for particular purposes, such as higher speed operation, higher power capacity and linear behavior for enhanced functionality. They can also be used in applications such as flexible devices, for which silicon is not well suited.

"Nanotubes have shown potential in the past, but there hasn't been a clear path from science to technology," said Moonsub Shim, a professor of materials science and engineering at Illinois, and a co-author of the paper. "Our work seeks to bridge this gap."

With Rogers and Shim, co-authors of the paper are postdoctoral research associate Seong Jun Kang and graduate students Coskun Kocabas and Taner Ozel, all at Illinois; electrical and computer engineering professor Muhammad A. Alam and graduate student Ninad Pimparkar at Purdue, and physics professor Slava V. Rotkin at Lehigh.

The National Science Foundation and the U.S. Department of Energy funded the work.

####

About University of Illinois at Urbana-Champaign
At Illinois, research shapes the campus identity, stimulates classroom instruction and serves as a springboard for public engagement activities throughout the world. Opportunities abound for graduate students to develop independent projects and launch their own careers as researchers while working alongside faculty and assisting in their research. Illinois continues its long tradition of groundbreaking accomplishments with remarkable new discoveries and achievements that inspire and enrich the lives of people around the world.

For more information, please click here

Contacts:
James E. Kloeppel

217-244-1073
University of Illinois at Urbana-Champaign

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

SEMATECH to Showcase Innovation and Advances in Manufacturing at SEMICON Japan 2014: SEMATECH experts will share the latest techniques, emerging trends and best practices in advanced manufacturing strategies and methodologies November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Nanometrics Announces Upcoming Investor Events November 19th, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Nanotubes/Buckyballs

Tesla NanoCoatings Increasing Use of SouthWest NanoTechnologies Carbon Nanotubes (CNTs) for its Infrastructure Coatings and Paints: High Quality SMW™ Specialty Multi-wall Carbon Nanotubes Incorporated into Teslan®-brand coatings used by Transportation, Oil and Gas Companies November 19th, 2014

Graphene/nanotube hybrid benefits flexible solar cells: Rice University labs create novel electrode for dye-sensitized cells November 17th, 2014

SouthWest NanoTechnologies to Demonstrate 3D Capacitive Touch Sensor Featuring Transparent, Thermoformed Carbon Nanotube Ink at Printed Electronics USA 2014 (Booth J25) -- “Conductive and Semiconducting Single-Wall Carbon Nanotube Inks” will be Topic of Company Presentation November 10th, 2014

Neural Canals Produced in Iran for Recovery of Sciatica Nerve November 8th, 2014

Nanoelectronics

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Leti Will Present 17 Papers at 2014 IEDM; the Highest-ever Total Includes Four Invited Papers: Institute also Will Present its Latest Results in Key Technologies and Its Roadmap for Silicon Nano-technologies at Workshop November 13th, 2014

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Discoveries

The mysterious 'action at a distance' between liquid containers November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Announcements

SEMATECH to Showcase Innovation and Advances in Manufacturing at SEMICON Japan 2014: SEMATECH experts will share the latest techniques, emerging trends and best practices in advanced manufacturing strategies and methodologies November 26th, 2014

Australian startup creates world’s first 100% cotton hydrophobic T-Shirts November 26th, 2014

The mysterious 'action at a distance' between liquid containers November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE