Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New synthetic self-assembling macromolecules mimic nature

Abstract:
We take "self-assembly" for granted when it is carried out by the biopolymers which comprise our hair, teeth, or skin. But when scientists devise new ways for molecules to self-assemble into new materials, it is an important achievement.

New synthetic self-assembling macromolecules mimic nature

BLACKSBURG, VA | Posted on March 23rd, 2007

Researchers with the Macromolecules and Interfaces Institute (MII) at Virginia Tech report such a development in the online issue of the Journal of the American Chemical Society in the article, "Aggregation of Rod-Coil Block Copolymers Containing Rigid Polyampholyte Blocks in Aqueous Solution" (10.1021/ja070422+ http://dx.doi.org/10.1021/ja070422+ ) and at the 233rd National Meeting of the American Chemical Society (ACS) in Chicago, March 25-29.

S. Richard Turner, MII director and research professor of chemistry at Virginia Tech, and Min Mao, a Ph.D. candidate in polymer chemistry, report the synthesis of a new family of charged, rod-like block copolymers. No longer than a fraction of the diameter of human hair, the tiny rods can be either positive or negative, or can have alternating positive and negative charges along the backbone. The rods self-assemble and the aggregated structures are remarkably stable in saline solution, Turner said.

"The early results of this study suggest that these charged polymers self-assemble by like-charge interactions similar to such natural polymers as DNA," said Turner. "The stable self-assembled structures could have potential applications in drug delivery and gene delivery systems."

But more immediate, "These unique block copolymers can be instructive models in understanding the forces that lead to the dense packing of DNA when complexed with viruses and other polymers," he said.

The ACS poster, "Stimulus Responsive Aggregation in Aqueous Solution of a Novel Rod-Coil Type Double Hydrophilic Block Copolymer Containing Rigid Strictly Alternating Polyampholytes" (PMSE 314), will be presented from 6 to 8 p.m. on Tuesday, March 27, at the Hyatt Regency Chicago Riverside Center as part of the joint PMSE-Polymer poster session.

Mao, who is a graduate research assistant in polymer chemistry and physics, received his bachelor of science in chemistry and master of science in surfactant, colloid, and surface science from Peking University, Beijing,

The research is supported by the Department of Chemistry at Virginia Tech and a grant from the ACS Petroleum Research Fund.

####

About Virginia Tech
Founded in 1872 as a land-grant college named Virginia Agricultural and Mechanical College, Virginia Tech is now a comprehensive, innovative research university with the largest full-time student population in Virginia. Through a combination of its three missions of learning, discovery, and engagement, Virginia Tech continually strives to accomplish the charge of its motto: Ut Prosim (That I May Serve).

For more information, please click here

Contacts:
Susan Trulove
(540) 231-05646

Copyright © Virginia Tech

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Self Assembly

New conductive ink for electronic apparel June 25th, 2015

Giving atoms their marching orders: Highly homogeneous nanotube enforces single-file flow of atoms in gas diffusion. Direct comparison of single-file and Fickian diffusion possible with new system described by researchers at the University of South Carolina and University of Flor June 24th, 2015

n-tech Research Issues Report on Smart Coatings Market, Free Download Available on Firm’s Website June 24th, 2015

Sweeping lasers snap together nanoscale geometric grids: New technique creates multi-layered, self-assembled grids with fully customizable shapes and compositions June 23rd, 2015

Discoveries

The Hydrogen-Fuel cell will revolutionize the economy of the world: New non-platinum and nanosized catalyst for polymer electrolyte fuel cell June 29th, 2015

June 29th, 2015

Efforts to Use Smart Nanocarriers to Cure Leukemia Yield Promising Results June 29th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Announcements

The Hydrogen-Fuel cell will revolutionize the economy of the world: New non-platinum and nanosized catalyst for polymer electrolyte fuel cell June 29th, 2015

June 29th, 2015

Efforts to Use Smart Nanocarriers to Cure Leukemia Yield Promising Results June 29th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Events/Classes

How Graphene–based Nanomaterials and Films Revolutionize Science Explained in July 9 Webinar Hosted by Park Systems June 29th, 2015

Graphene breakthrough as Bosch creates magnetic sensor 100 times more sensitive than silicon equivalent June 28th, 2015

Spain nanotechnology featured at NANO KOREA 2015 June 26th, 2015

Nanometrics to Participate in 7th Annual CEO Investor Summit 2015: Investor Event Held Concurrently With SEMICON West in San Francisco June 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project