Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Scientific Surprise Greets Researchers at Higher Magnetic Fields

Abstract:
Research performed by a team at Florida State University's National High Magnetic Field Laboratory in Tallahassee, Fla. suggests that the benefits of building higher-field superconducting magnets likely will far outweigh the costs of building them.

Scientific Surprise Greets Researchers at Higher Magnetic Fields

Tallahassee, FL | Posted on March 21st, 2007

Research performed by a team at Florida State University's National High Magnetic Field Laboratory suggests that the benefits of building higher-field superconducting magnets likely will far outweigh the costs of building them.

FSU researchers Riqiang Fu, Ozge Gunaydin-Sen and Naresh Dalal discovered something they weren't expecting while trying to improve the resolution, or quality of image, in the magnet lab's unique 900-megahertz, 21.1-tesla magnet. While experimenting with the giant magnet, the three noted an exponential increase in the ease of detecting the "fingerprint" of the chemical compound they were studying as they exposed it to ever-higher magnetic fields.

A paper describing their research was published recently in the Journal of the American Chemical Society, a top-tier chemistry journal. The paper can be accessed at http://pubs.acs.org/cgibin/article.cgi/jacsat/2007/129/i03/pdf/ja067179j.pdf .

"This paper has very strong implications for the United States staying ahead in magnet technology, which would bring great dividends in research and improvements in medical imaging," said Tim Cross, director of the magnet lab's NMR User Program and a professor of chemistry and biochemistry at FSU. "We need — and are working on — additional fundamental studies that show the benefits of going to higher fields."

Nuclear magnetic resonance, or NMR, generates a true-to-life fingerprint — a unique pattern indicating the presence of specific molecules — for a research sample that is being analyzed. As a technique, NMR is very accurate as long as one can detect the sample in the first place. The ease or difficulty of detecting a sample is known as "sensitivity." Low sensitivity has been one of NMR's biggest liabilities, because the lower

the sensitivity, the longer the experiment takes. Such slowness has limited NMR's potential applications.

"Poor signal is like a faint picture in the darkness," said Dalal, the Dirac Professor of Chemistry and Biochemistry at FSU. "We've shown that the ‘900' (magnet) increases the picture's brightness by a factor of about 10 relative to low-field images. Think of how much more you can see in a room that is that much brighter ... and imagine what you'd see at even higher fields."

Theorists had predicted a linear increase in both resolution and sensitivity at higher magnetic fields, moving from 14.1 tesla to 21.1 tesla, the current state of the art in superconducting magnets. In their experiment, the FSU team members observed an exponential increase — with the sensitivity increasing by a factor of three over what had been predicted.

Higher sensitivity in a magnet means it takes far less time - or much less of a sample — to conduct an experiment.

"The reduction in time is like going from one hour to a couple of minutes," said Fu, an associate scholar/scientist at the magnet lab and the FSU chemistry department. "Many experiments take weeks, and such a reduction in time will allow for far more studies to be conducted on a single instrument."

Dalal said the shortening of experimental time increases scientists' ability to fingerprint materials, opening up new areas of scientific investigation in NMR, including the study of materials useful in nanotechnology and medical imaging. The need for less of a sample — up to 18 times less — will open up high-field NMR to the study of enzymes and purified proteins, an area in which samples typically are of limited size.

####

About Florida State University’
The National High Magnetic Field Laboratory ( http://www.magnet.fsu.edu ) develops and operates state-of-the-art, high-magnetic-field facilities that faculty and visiting scientists and engineers use for interdisciplinary research. The laboratory is sponsored by the National Science Foundation and the state of Florida and is the only facility of its kind in the United States.

For more information, please click here

Contacts:
Naresh Dalal
(850) 644-3398

or
Riqiang Fu
(850) 644-5044

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

New imaging agent provides better picture of the gut July 25th, 2014

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014

Researchers create vaccine for dust-mite allergies Main Page Content: Vaccine reduced lung inflammation to allergens in lab and animal tests July 22nd, 2014

Discoveries

Seeing is bead-lieving: Rice University scientists create model 'bead-spring' chains with tunable properties July 28th, 2014

Measuring the Smallest Magnets July 28th, 2014

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Announcements

Measuring the Smallest Magnets July 28th, 2014

WITec to host the 11th Confocal Raman Imaging Symposium from September 29th - October 1st in Ulm, Germany July 28th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE