Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > NJIT professor obtains patent to uncover trace elements of airborne pollutants

Abstract:
A breakthrough patent awarded to a New Jersey Institute of Technology (NJIT) researcher will enable manufacturers to create a device to uncover miniscule amounts of airborne pollutants. Using computer chip technology, Somenath Mitra, PhD, professor and chair of NJIT's Department of Chemistry and Environmental Sciences, has developed and patented what could eventually become a simple keychain device to detect tiny, though potentially lethal, amounts of airborne carcinogens.

NJIT professor obtains patent to uncover trace elements of airborne pollutants

Newark, NJ | Posted on March 20th, 2007

Calling the invention a microconcentrator, Mitra said his NJIT research team has created a novel, cost-effective and efficient method to concentrate pollutants. By doing so, pollutants can then be introduced onto a sensor to identify trace pollutants.

"Our chip has a polymer enabling it to concentrate the pollutants and a tiny built-in heater that drives them onto the sensor," Mitra said. "It works like a bicycle pump. First our chip accumulates the pollutants as a pump fills with air. Then, the chip directs the tiny heater to send a large enough sampling of pollutants—if they exist-- to the sensor's head. With a large sample, the sensor can recognize that pollutants exist."

"A Microfabricated Microconcentrator For Sensors and Gas Chromatography," US Patent 7147695B2, was awarded to Mitra in December of 2006. Research about the invention was previously published in Sensors and Materials ("Design and Fabrication of Microheaters for Microfluidic Channels") in 2006 and The Journal of Chromatography A ("A Microfabricated Microconcentrator for Sensors and Gas Chromatography") in 2003.

"The value of our sensing system is that it can see pollutants even when they are present at very low concentrations," said Mitra. "Down the road, we hope to see this technology pave the way for developing a small, inexpensive device to fit on a key chain. These devices would do the same job as larger instruments used in chemical laboratories for monitoring organic and other pollutants in air and water."

Although many advances have been made in science, it is still not as simple as many people imagine for scientists to monitor pollutants. The consequences from automobile exhaust, the dilution of cleaning solvents in air or the problems that occur when tankers spill gasoline, remain of concern to scientists.

"Typical concentrations of many pollutants can be small--only a few molecules of pollutants in every part per billion of air or water molecules," Mitra said. "But even at these levels, these pollutants pose a threat to human and public health."

"For example, we know that benzene, a by-product of automobile exhaust, causes cancer," Mitra said. "The organics from auto exhaust fumes also lead to smog formation in urban areas like Los Angeles. Measuring benzene and similar chemicals, though, is costly and difficult. One must have access to large instruments that cost thousands of dollars. But using the microconcentrator, this will no longer be the case."

Although the market currently features affordable miniature sensors, the technology is not there yet for the tiniest amounts of pollutants, said Mitra. "I'm talking about creating an instrument sensitive enough to measure concentrations of pollutants such as benzene, which may range in just a few parts per million or even billion."

Mitra's research interests are two-pronged. He looks for novel analytical techniques and sensors to discover low-level trace elements in air, water and soil. His current projects include developing instrumentation and methods for continuous, on-line analysis of trace levels of organic pollutants in air and water. These methods range from using gas chromatography or mass spectrometry to micro-scale, lab-on-a-chip devices.

Mitra also looks for new ways to assemble and modify carbon nanotubes to create novel and new materials to be used in applications ranging from tennis rackets to rocket ships. Other uses might include developing smaller nano chips for electronics (also known as nano-electronics) and inexpensive, high-performance throw-away chemical sensors. The latter might range from sensors for clinical diagnostic purposes to using sensors to find toxic chemicals in air, food or water.

Mitra has published 70 journal papers and is the coauthor of Environmental Chemical Analysis (CRC Press, New York, 1998). He also edited Sample Preparation Techniques in Analytical Chemistry (John Wiley, New York, 2003). Mitra holds five patents and has made more than 150 presentations conferences.

Mitra received his PhD from Southern Illinois University in 1988.

####

About New Jersey Institute of Technology
NJIT, New Jersey's science and technology university, at the edge in knowledge, enrolls more than 8,000 students in bachelor's, master's and doctoral degrees in 92 degree programs offered by six colleges: Newark College of Engineering, New Jersey School of Architecture, College of Science and Liberal Arts, School of Management, Albert Dorman Honors College and College of Computing Sciences. NJIT is renowned for expertise in architecture, applied mathematics, wireless communications and networking, solar physics, advanced engineered particulate materials, nanotechnology, neural engineering and e-learning. In 2006, Princeton Review named NJIT among the nation's top 25 campuses for technology and top 150 for best value. U.S. News & World Report's 2007 Annual Guide to America's Best Colleges ranked NJIT in the top tier of national research universities.

For more information, please click here

Contacts:
Sheryl Weinstein

973-596-3436

Copyright © New Jersey Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Band Gaps, Made to Order: Engineers create atomically thin superlattice materials with precision September 26th, 2017

Assembly of nanoparticles proceeds like a zipper: Viruses and nanoparticles can be assembled into processable superlattice wires according to scientists from Aalto University Finland September 25th, 2017

Enhancing the sensing capabilities of diamonds with quantum properties: A simple method can give diamonds the special properties needed for quantum applications such as sensing magnetic fields September 24th, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Chip Technology

Band Gaps, Made to Order: Engineers create atomically thin superlattice materials with precision September 26th, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

GLOBALFOUNDRIES Delivers Custom 14nm FinFET Technology for IBM Systems: Jointly developed 14HP process is world’s only technology that leverages both FinFET and SOI September 20th, 2017

Sensors

Enhancing the sensing capabilities of diamonds with quantum properties: A simple method can give diamonds the special properties needed for quantum applications such as sensing magnetic fields September 24th, 2017

Leti Develops Proof of Concept to Test Wireless Systems in Aircraft: Will Present Results of Joint Project at AeroTech Conference And Exhibition in Fort Worth, Texas, Sept. 26-28 September 20th, 2017

Research shows how DNA molecules cross nanopores: Study could inform biosensors, manufacturing, and more September 5th, 2017

Leti and Partners in PiezoMAT Project Develop New Fingerprint Technology for Highly Reliable Security and ID Applications: Ultra-high Resolution Pressure Sensing Uses Matrices of Vertical Piezoelectric Nanowire To Reconstruct the Smallest Features of Human Fingerprints September 5th, 2017

Nanoelectronics

Band Gaps, Made to Order: Engineers create atomically thin superlattice materials with precision September 26th, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

GLOBALFOUNDRIES Introduces New 12nm FinFET Technology for High-Performance Applications September 20th, 2017

Bit data goes anti-skyrmions September 1st, 2017

Announcements

Band Gaps, Made to Order: Engineers create atomically thin superlattice materials with precision September 26th, 2017

Assembly of nanoparticles proceeds like a zipper: Viruses and nanoparticles can be assembled into processable superlattice wires according to scientists from Aalto University Finland September 25th, 2017

Enhancing the sensing capabilities of diamonds with quantum properties: A simple method can give diamonds the special properties needed for quantum applications such as sensing magnetic fields September 24th, 2017

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Patents/IP/Tech Transfer/Licensing

Nanoparticles limit damage in spinal cord injury: Injection after an injury reduces inflammation and scarring September 6th, 2017

More durable, less expensive fuel cells: University of Delaware researchers have developed a new technology that could speed up the commercialization of fuel cell vehicles September 5th, 2017

Argonne National Laboratory’s Continuous ALD Technology Licensed Exclusively to Forge Nano July 7th, 2017

Aculon Expands NanoProof® Product Line for Electronics Waterproofing Technology: With growing market opportunities Aculon Launches NanoProof® 8 with Push Through Connectivity™ and NanoProof® DAB a syringe application May 30th, 2017

Environment

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

High-tech electronics made from autumn leaves: New process converts biomass waste into useful electronic devices August 30th, 2017

Nanoparticles pollution rises 30 percent when flex-fuel cars switch from bio to fossil: Study carried out in São Paulo, home to the world's largest flex fuel urban fleet, shows increase of ultrafine particulate matter when ethanol prices rose and consumption fell August 28th, 2017

A more complete picture of the nano world August 24th, 2017

Sports

Synthetic “Melanin” Could Act as a Natural Sunscreen: The pigmentlike nanoparticles could protect cells from the sun’s damaging rays July 1st, 2017

Bosch announces high-performance MEMS acceleration sensors for wearables June 27th, 2017

Applied Graphene Materials plc - Significant commercial progress in AGM’s three core sectors March 3rd, 2017

STMicroelectronics Peps Up Booming Social-Fitness Scene with Smart Motion Sensors for Better Accuracy, Longer Battery Life, and Faster Time to Market January 2nd, 2017

Aerospace/Space

Leti Develops Proof of Concept to Test Wireless Systems in Aircraft: Will Present Results of Joint Project at AeroTech Conference And Exhibition in Fort Worth, Texas, Sept. 26-28 September 20th, 2017

A revolution in lithium-ion batteries is becoming more realistic September 5th, 2017

The July 23 close fly-by of asteroid 2017 BS5 is explored in a Q&A with Dr. John S. Lewis, chief scientist at Deep Space Industries July 23rd, 2017

National Space Society Governor Scott Pace Named to National Space Council as Executive Secretary July 18th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project