Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > NJIT professor obtains patent to uncover trace elements of airborne pollutants

Abstract:
A breakthrough patent awarded to a New Jersey Institute of Technology (NJIT) researcher will enable manufacturers to create a device to uncover miniscule amounts of airborne pollutants. Using computer chip technology, Somenath Mitra, PhD, professor and chair of NJIT's Department of Chemistry and Environmental Sciences, has developed and patented what could eventually become a simple keychain device to detect tiny, though potentially lethal, amounts of airborne carcinogens.

NJIT professor obtains patent to uncover trace elements of airborne pollutants

Newark, NJ | Posted on March 20th, 2007

Calling the invention a microconcentrator, Mitra said his NJIT research team has created a novel, cost-effective and efficient method to concentrate pollutants. By doing so, pollutants can then be introduced onto a sensor to identify trace pollutants.

"Our chip has a polymer enabling it to concentrate the pollutants and a tiny built-in heater that drives them onto the sensor," Mitra said. "It works like a bicycle pump. First our chip accumulates the pollutants as a pump fills with air. Then, the chip directs the tiny heater to send a large enough sampling of pollutants—if they exist-- to the sensor's head. With a large sample, the sensor can recognize that pollutants exist."

"A Microfabricated Microconcentrator For Sensors and Gas Chromatography," US Patent 7147695B2, was awarded to Mitra in December of 2006. Research about the invention was previously published in Sensors and Materials ("Design and Fabrication of Microheaters for Microfluidic Channels") in 2006 and The Journal of Chromatography A ("A Microfabricated Microconcentrator for Sensors and Gas Chromatography") in 2003.

"The value of our sensing system is that it can see pollutants even when they are present at very low concentrations," said Mitra. "Down the road, we hope to see this technology pave the way for developing a small, inexpensive device to fit on a key chain. These devices would do the same job as larger instruments used in chemical laboratories for monitoring organic and other pollutants in air and water."

Although many advances have been made in science, it is still not as simple as many people imagine for scientists to monitor pollutants. The consequences from automobile exhaust, the dilution of cleaning solvents in air or the problems that occur when tankers spill gasoline, remain of concern to scientists.

"Typical concentrations of many pollutants can be small--only a few molecules of pollutants in every part per billion of air or water molecules," Mitra said. "But even at these levels, these pollutants pose a threat to human and public health."

"For example, we know that benzene, a by-product of automobile exhaust, causes cancer," Mitra said. "The organics from auto exhaust fumes also lead to smog formation in urban areas like Los Angeles. Measuring benzene and similar chemicals, though, is costly and difficult. One must have access to large instruments that cost thousands of dollars. But using the microconcentrator, this will no longer be the case."

Although the market currently features affordable miniature sensors, the technology is not there yet for the tiniest amounts of pollutants, said Mitra. "I'm talking about creating an instrument sensitive enough to measure concentrations of pollutants such as benzene, which may range in just a few parts per million or even billion."

Mitra's research interests are two-pronged. He looks for novel analytical techniques and sensors to discover low-level trace elements in air, water and soil. His current projects include developing instrumentation and methods for continuous, on-line analysis of trace levels of organic pollutants in air and water. These methods range from using gas chromatography or mass spectrometry to micro-scale, lab-on-a-chip devices.

Mitra also looks for new ways to assemble and modify carbon nanotubes to create novel and new materials to be used in applications ranging from tennis rackets to rocket ships. Other uses might include developing smaller nano chips for electronics (also known as nano-electronics) and inexpensive, high-performance throw-away chemical sensors. The latter might range from sensors for clinical diagnostic purposes to using sensors to find toxic chemicals in air, food or water.

Mitra has published 70 journal papers and is the coauthor of Environmental Chemical Analysis (CRC Press, New York, 1998). He also edited Sample Preparation Techniques in Analytical Chemistry (John Wiley, New York, 2003). Mitra holds five patents and has made more than 150 presentations conferences.

Mitra received his PhD from Southern Illinois University in 1988.

####

About New Jersey Institute of Technology
NJIT, New Jersey's science and technology university, at the edge in knowledge, enrolls more than 8,000 students in bachelor's, master's and doctoral degrees in 92 degree programs offered by six colleges: Newark College of Engineering, New Jersey School of Architecture, College of Science and Liberal Arts, School of Management, Albert Dorman Honors College and College of Computing Sciences. NJIT is renowned for expertise in architecture, applied mathematics, wireless communications and networking, solar physics, advanced engineered particulate materials, nanotechnology, neural engineering and e-learning. In 2006, Princeton Review named NJIT among the nation's top 25 campuses for technology and top 150 for best value. U.S. News & World Report's 2007 Annual Guide to America's Best Colleges ranked NJIT in the top tier of national research universities.

For more information, please click here

Contacts:
Sheryl Weinstein

973-596-3436

Copyright © New Jersey Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

The "Tipping Point" February 12th, 2014

Chip Technology

Making graphene work for real-world devices: Fundamental research in phonon scattering helps researchers design graphene materials for applications April 24th, 2014

Return on investment for kit and promotion materials April 24th, 2014

Harris & Harris Group Notes the Receipt of Proceeds From the Sale of Molecular Imprints' Semiconductor Business to Canon April 22nd, 2014

Progress made in developing nanoscale electronics: New research directs charges through single molecules April 21st, 2014

Sensors

University of Tehran Researchers Invent Non-Enzyme Sensor to Detect Blood Sugar April 23rd, 2014

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Biologists Develop Nanosensors to Visualize Movements and Distribution of Plant Stress Hormone April 15th, 2014

Nanoelectronics

Imec Reports Four Percent Growth for 2013 Fiscal Year End —Continues to Accelerate Innovation Through Global Collaborations and Technological Breakthroughs in Nanoelectronics— April 24th, 2014

Progress made in developing nanoscale electronics: New research directs charges through single molecules April 21st, 2014

Better solar cells, better LED light and vast optical possibilities April 12th, 2014

Catching the (Invisible) Wave: UC Santa Barbara researchers create a unique semiconductor that manipulates light in the invisible infrared/terahertz range, paving the way for new and enhanced applications April 11th, 2014

Announcements

Imec Reports Four Percent Growth for 2013 Fiscal Year End —Continues to Accelerate Innovation Through Global Collaborations and Technological Breakthroughs in Nanoelectronics— April 24th, 2014

Multicapacity Microreactor for Catalyst Characterisation April 24th, 2014

Making graphene work for real-world devices: Fundamental research in phonon scattering helps researchers design graphene materials for applications April 24th, 2014

Return on investment for kit and promotion materials April 24th, 2014

Patents/IP/Tech Transfer/Licensing

Harris & Harris Group Notes Mersana's Collaboration Agreement With Subsidiary of Takeda Pharmaceutical Co. April 8th, 2014

Nanoparticles cause cancer cells to self-destruct April 3rd, 2014

A*STAR's Simtech collaboration agreements to accelerate the growth and development of the microfluidics industry April 1st, 2014

Dolomite releases novel droplet-on-demand sequencing and droplet generation microfluidic system April 1st, 2014

Environment

Trees go high-tech: process turns cellulose into energy storage devices April 7th, 2014

Fabricating Nanostructures with Silk Could Make Clean Rooms Green Rooms March 31st, 2014

University of Waterloo Engineering to Showcase Student Design March 14th, 2014

Iran Applying Nanotechnology in Growing Number of Industries March 10th, 2014

Sports

‘Four!' Heads Up, Wide Use of More Flexible Metallic Glass Coming Your Way: Advances in Glass Alloys Lead to Strength, Flexibility March 4th, 2014

ASTM International Nanotechnology Committee Approves Airborne Nanoparticle Measurement Standard December 10th, 2013

Discovery Inspired by nature: textured materials to aid industry and military: Innovation Corps team developed metals and plastic that repel water, capture sunlight and prevent ice build-up August 19th, 2013

First human tests of new biosensor that warns when athletes are about to ‘hit the wall’ July 24th, 2013

Aerospace/Space

National Space Society Congratulates SpaceX on the Success of CRS-3 and the First Flight of the Falcon 9R April 22nd, 2014

Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting April 15th, 2014

NASA Engineers Prepare Game Changing Cryotank for Testing April 9th, 2014

Space Industry Leaders Countdown To Space Tech Expo 2014 – Opening Next Week: Space Tech Expo and Conference 2014 opens its doors at the Long Beach Convention Center, Long Beach April 1 – 3 March 30th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE