Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > NJIT professor obtains patent to uncover trace elements of airborne pollutants

Abstract:
A breakthrough patent awarded to a New Jersey Institute of Technology (NJIT) researcher will enable manufacturers to create a device to uncover miniscule amounts of airborne pollutants. Using computer chip technology, Somenath Mitra, PhD, professor and chair of NJIT's Department of Chemistry and Environmental Sciences, has developed and patented what could eventually become a simple keychain device to detect tiny, though potentially lethal, amounts of airborne carcinogens.

NJIT professor obtains patent to uncover trace elements of airborne pollutants

Newark, NJ | Posted on March 20th, 2007

Calling the invention a microconcentrator, Mitra said his NJIT research team has created a novel, cost-effective and efficient method to concentrate pollutants. By doing so, pollutants can then be introduced onto a sensor to identify trace pollutants.

"Our chip has a polymer enabling it to concentrate the pollutants and a tiny built-in heater that drives them onto the sensor," Mitra said. "It works like a bicycle pump. First our chip accumulates the pollutants as a pump fills with air. Then, the chip directs the tiny heater to send a large enough sampling of pollutants—if they exist-- to the sensor's head. With a large sample, the sensor can recognize that pollutants exist."

"A Microfabricated Microconcentrator For Sensors and Gas Chromatography," US Patent 7147695B2, was awarded to Mitra in December of 2006. Research about the invention was previously published in Sensors and Materials ("Design and Fabrication of Microheaters for Microfluidic Channels") in 2006 and The Journal of Chromatography A ("A Microfabricated Microconcentrator for Sensors and Gas Chromatography") in 2003.

"The value of our sensing system is that it can see pollutants even when they are present at very low concentrations," said Mitra. "Down the road, we hope to see this technology pave the way for developing a small, inexpensive device to fit on a key chain. These devices would do the same job as larger instruments used in chemical laboratories for monitoring organic and other pollutants in air and water."

Although many advances have been made in science, it is still not as simple as many people imagine for scientists to monitor pollutants. The consequences from automobile exhaust, the dilution of cleaning solvents in air or the problems that occur when tankers spill gasoline, remain of concern to scientists.

"Typical concentrations of many pollutants can be small--only a few molecules of pollutants in every part per billion of air or water molecules," Mitra said. "But even at these levels, these pollutants pose a threat to human and public health."

"For example, we know that benzene, a by-product of automobile exhaust, causes cancer," Mitra said. "The organics from auto exhaust fumes also lead to smog formation in urban areas like Los Angeles. Measuring benzene and similar chemicals, though, is costly and difficult. One must have access to large instruments that cost thousands of dollars. But using the microconcentrator, this will no longer be the case."

Although the market currently features affordable miniature sensors, the technology is not there yet for the tiniest amounts of pollutants, said Mitra. "I'm talking about creating an instrument sensitive enough to measure concentrations of pollutants such as benzene, which may range in just a few parts per million or even billion."

Mitra's research interests are two-pronged. He looks for novel analytical techniques and sensors to discover low-level trace elements in air, water and soil. His current projects include developing instrumentation and methods for continuous, on-line analysis of trace levels of organic pollutants in air and water. These methods range from using gas chromatography or mass spectrometry to micro-scale, lab-on-a-chip devices.

Mitra also looks for new ways to assemble and modify carbon nanotubes to create novel and new materials to be used in applications ranging from tennis rackets to rocket ships. Other uses might include developing smaller nano chips for electronics (also known as nano-electronics) and inexpensive, high-performance throw-away chemical sensors. The latter might range from sensors for clinical diagnostic purposes to using sensors to find toxic chemicals in air, food or water.

Mitra has published 70 journal papers and is the coauthor of Environmental Chemical Analysis (CRC Press, New York, 1998). He also edited Sample Preparation Techniques in Analytical Chemistry (John Wiley, New York, 2003). Mitra holds five patents and has made more than 150 presentations conferences.

Mitra received his PhD from Southern Illinois University in 1988.

####

About New Jersey Institute of Technology
NJIT, New Jersey's science and technology university, at the edge in knowledge, enrolls more than 8,000 students in bachelor's, master's and doctoral degrees in 92 degree programs offered by six colleges: Newark College of Engineering, New Jersey School of Architecture, College of Science and Liberal Arts, School of Management, Albert Dorman Honors College and College of Computing Sciences. NJIT is renowned for expertise in architecture, applied mathematics, wireless communications and networking, solar physics, advanced engineered particulate materials, nanotechnology, neural engineering and e-learning. In 2006, Princeton Review named NJIT among the nation's top 25 campuses for technology and top 150 for best value. U.S. News & World Report's 2007 Annual Guide to America's Best Colleges ranked NJIT in the top tier of national research universities.

For more information, please click here

Contacts:
Sheryl Weinstein

973-596-3436

Copyright © New Jersey Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

A nano-roundabout for light December 10th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Chip Technology

A nano-roundabout for light December 10th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Sensors

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Tip-assisted chemistry enables chemical reactions at femtoliter scale November 16th, 2016

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

Nanoelectronics

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

Announcements

A nano-roundabout for light December 10th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Patents/IP/Tech Transfer/Licensing

Keystone Nano Announces The US FDA Has Awarded Orphan Drug Designation For Ceramides For The Treatment Of Liver Cancer November 8th, 2016

Leti to Tackle Tomorrow's Research Strategies with Stanford University’s SystemX Alliance: French R&D Center Is the First Research Institute to Join the Collaboration and Provides Bridges Between Academia and Industry, Leveraging Alliance’s Potential October 4th, 2016

Picosun patents ALD nanolaminate to prevent electronics from overheating September 28th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Environment

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Semiconductor-free microelectronics are now possible, thanks to metamaterials November 9th, 2016

First time physicists observed and quantified tiny nanoparticle crossing lipid membrane November 7th, 2016

Nanosensors on the alert for terrorist threats: Scientists interested in the prospects of gas sensors based on binary metal oxide nanocomposites November 5th, 2016

Sports

Abalonyx launches Reduced Graphene Oxide Product: Abalonyx has successfully scaled up production of thermally reduced graphene oxide (rGO) in its Tofte, Norway, production facility. This product is now offered to customers in Kg-quantities May 10th, 2016

What makes penguin feathers ice-proof February 24th, 2016

Imec and Cloudtag Collaborate on High Quality Frictionless Wearables for Lifestyle Coaching: Next-generation health and fitness tracker Cloudtag TrackTM launched at CES 2016 January 7th, 2016

New stretchable, wearable sensor made with chewing gum (video) December 2nd, 2015

Aerospace/Space

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

New records set up with 'Screws of Light' November 20th, 2016

Keep it Clean: Leti and French Partners to Test ‘Smart’ Antibacterial Surfaces in Space: Matiss Experiment Designed to Measure Most Effective Material for Cleaning International Space Station and Is Expected to Provide Earth-bound Applications November 15th, 2016

Nanocellulose in medicine and green manufacturing: American University professor develops method to improve performance of cellulose nanocrystals November 7th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project