Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > NJIT professor obtains patent to uncover trace elements of airborne pollutants

Abstract:
A breakthrough patent awarded to a New Jersey Institute of Technology (NJIT) researcher will enable manufacturers to create a device to uncover miniscule amounts of airborne pollutants. Using computer chip technology, Somenath Mitra, PhD, professor and chair of NJIT's Department of Chemistry and Environmental Sciences, has developed and patented what could eventually become a simple keychain device to detect tiny, though potentially lethal, amounts of airborne carcinogens.

NJIT professor obtains patent to uncover trace elements of airborne pollutants

Newark, NJ | Posted on March 20th, 2007

Calling the invention a microconcentrator, Mitra said his NJIT research team has created a novel, cost-effective and efficient method to concentrate pollutants. By doing so, pollutants can then be introduced onto a sensor to identify trace pollutants.

"Our chip has a polymer enabling it to concentrate the pollutants and a tiny built-in heater that drives them onto the sensor," Mitra said. "It works like a bicycle pump. First our chip accumulates the pollutants as a pump fills with air. Then, the chip directs the tiny heater to send a large enough sampling of pollutants—if they exist-- to the sensor's head. With a large sample, the sensor can recognize that pollutants exist."

"A Microfabricated Microconcentrator For Sensors and Gas Chromatography," US Patent 7147695B2, was awarded to Mitra in December of 2006. Research about the invention was previously published in Sensors and Materials ("Design and Fabrication of Microheaters for Microfluidic Channels") in 2006 and The Journal of Chromatography A ("A Microfabricated Microconcentrator for Sensors and Gas Chromatography") in 2003.

"The value of our sensing system is that it can see pollutants even when they are present at very low concentrations," said Mitra. "Down the road, we hope to see this technology pave the way for developing a small, inexpensive device to fit on a key chain. These devices would do the same job as larger instruments used in chemical laboratories for monitoring organic and other pollutants in air and water."

Although many advances have been made in science, it is still not as simple as many people imagine for scientists to monitor pollutants. The consequences from automobile exhaust, the dilution of cleaning solvents in air or the problems that occur when tankers spill gasoline, remain of concern to scientists.

"Typical concentrations of many pollutants can be small--only a few molecules of pollutants in every part per billion of air or water molecules," Mitra said. "But even at these levels, these pollutants pose a threat to human and public health."

"For example, we know that benzene, a by-product of automobile exhaust, causes cancer," Mitra said. "The organics from auto exhaust fumes also lead to smog formation in urban areas like Los Angeles. Measuring benzene and similar chemicals, though, is costly and difficult. One must have access to large instruments that cost thousands of dollars. But using the microconcentrator, this will no longer be the case."

Although the market currently features affordable miniature sensors, the technology is not there yet for the tiniest amounts of pollutants, said Mitra. "I'm talking about creating an instrument sensitive enough to measure concentrations of pollutants such as benzene, which may range in just a few parts per million or even billion."

Mitra's research interests are two-pronged. He looks for novel analytical techniques and sensors to discover low-level trace elements in air, water and soil. His current projects include developing instrumentation and methods for continuous, on-line analysis of trace levels of organic pollutants in air and water. These methods range from using gas chromatography or mass spectrometry to micro-scale, lab-on-a-chip devices.

Mitra also looks for new ways to assemble and modify carbon nanotubes to create novel and new materials to be used in applications ranging from tennis rackets to rocket ships. Other uses might include developing smaller nano chips for electronics (also known as nano-electronics) and inexpensive, high-performance throw-away chemical sensors. The latter might range from sensors for clinical diagnostic purposes to using sensors to find toxic chemicals in air, food or water.

Mitra has published 70 journal papers and is the coauthor of Environmental Chemical Analysis (CRC Press, New York, 1998). He also edited Sample Preparation Techniques in Analytical Chemistry (John Wiley, New York, 2003). Mitra holds five patents and has made more than 150 presentations conferences.

Mitra received his PhD from Southern Illinois University in 1988.

####

About New Jersey Institute of Technology
NJIT, New Jersey's science and technology university, at the edge in knowledge, enrolls more than 8,000 students in bachelor's, master's and doctoral degrees in 92 degree programs offered by six colleges: Newark College of Engineering, New Jersey School of Architecture, College of Science and Liberal Arts, School of Management, Albert Dorman Honors College and College of Computing Sciences. NJIT is renowned for expertise in architecture, applied mathematics, wireless communications and networking, solar physics, advanced engineered particulate materials, nanotechnology, neural engineering and e-learning. In 2006, Princeton Review named NJIT among the nation's top 25 campuses for technology and top 150 for best value. U.S. News & World Report's 2007 Annual Guide to America's Best Colleges ranked NJIT in the top tier of national research universities.

For more information, please click here

Contacts:
Sheryl Weinstein

973-596-3436

Copyright © New Jersey Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

New remote-controlled microrobots for medical operations July 23rd, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

New probe developed for improved high resolution measurement of brain temperature: Improved accuracy could allow researchers to measure brain temperature in times of trauma when small deviations in temperature can lead to additional brain injury July 23rd, 2016

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

Chip Technology

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

New Yale-developed device lengthens the life of quantum information July 22nd, 2016

New reaction for the synthesis of nanostructures July 21st, 2016

Research team led by NUS scientists develop plastic flexible magnetic memory device: Novel technique to implant high-performance magnetic memory chip on a flexible plastic surface without compromising performance July 21st, 2016

Sensors

Electron 'spin control' of levitated nanodiamonds could bring advances in sensors, quantum information processing July 20th, 2016

Easier, faster, cheaper: A full-filling approach to making nanotubes of consistent quality: Approach opens a straightforward route for engineering the properties of single-wall carbon nanotubes July 19th, 2016

Researchers invent 'smart' thread that collects diagnostic data when sutured into tissue: Advances could pave way for new generation of implantable and wearable diagnostics July 18th, 2016

UNIST engineers octopus-inspired smart adhesive pads July 15th, 2016

Nanoelectronics

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

Scientists glimpse inner workings of atomically thin transistors July 21st, 2016

'Green' electronic materials produced with synthetic biology July 16th, 2016

Tiny works of art with great potential: New materials for the construction of metal-organic 2-dimensional quasicrystals July 15th, 2016

Announcements

New remote-controlled microrobots for medical operations July 23rd, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

New probe developed for improved high resolution measurement of brain temperature: Improved accuracy could allow researchers to measure brain temperature in times of trauma when small deviations in temperature can lead to additional brain injury July 23rd, 2016

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

Patents/IP/Tech Transfer/Licensing

Research team led by NUS scientists develop plastic flexible magnetic memory device: Novel technique to implant high-performance magnetic memory chip on a flexible plastic surface without compromising performance July 21st, 2016

New nanoscale technologies could revolutionize microscopes, study of disease July 20th, 2016

Keystone Nano selected as a top scoring company by NCI investor review panel July 19th, 2016

Integrated trio of 2-D nanomaterials unlocks graphene electronics applications: Voltage-controlled oscillator developed at UC Riverside could be used in thousands of applications from computers to wearable technologies July 7th, 2016

Environment

News from Quorum: The College of New Jersey use the Quorum Cryo-SEM preparation system in a project to study ice crystals in high altitude clouds July 19th, 2016

Researchers improve catalyst efficiency for clean industries: Method reduces use of expensive platinum July 8th, 2016

Electronic nose smells pesticides and nerve gas July 6th, 2016

Wireless, wearable toxic-gas detector: Inexpensive sensors could be worn by soldiers to detect hazardous chemical agents July 4th, 2016

Sports

Abalonyx launches Reduced Graphene Oxide Product: Abalonyx has successfully scaled up production of thermally reduced graphene oxide (rGO) in its Tofte, Norway, production facility. This product is now offered to customers in Kg-quantities May 10th, 2016

What makes penguin feathers ice-proof February 24th, 2016

Imec and Cloudtag Collaborate on High Quality Frictionless Wearables for Lifestyle Coaching: Next-generation health and fitness tracker Cloudtag TrackTM launched at CES 2016 January 7th, 2016

New stretchable, wearable sensor made with chewing gum (video) December 2nd, 2015

Aerospace/Space

Scientists move 1 step closer to creating an invisibility cloak July 15th, 2016

Bouncing droplets remove contaminants like pogo jumpers: Researchers at Duke University and the University of British Columbia are exploring whether surfaces can shed dirt without being subjected to fragile coatings July 7th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Novel capping strategy improves stability of perovskite nanocrystals: Study addresses instability issues with organometal-halide perovskites, a promising class of materials for solar cells, LEDs, and other applications June 13th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic