Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > 6 universities collaborate to study biologically assembled quantum electronic systems

Abstract:
US Department of Defense awards $6M for joint research effort

6 universities collaborate to study biologically assembled quantum electronic systems

Los Angeles, CA | Posted on March 19th, 2007

The U.S. Department of Defense is awarding a team of nine professors from six universities $6 million over five years to exploit precise biological assembly for the study of quantum physics in nanoparticle arrays. This research will help to produce a fundamental understanding of quantum electronic systems, which could impact the way future electronics are created.

The UCLA Henry Samueli School of Engineering and Applied Science is teaming up with leading researchers at the University of Minnesota, New York University, the University of Texas at Austin, the University of Pennsylvania and Columbia University to develop biological strategies combining DNA, proteins, and peptides with chemical synthesis techniques to construct arrays of nanoparticles. (A nanoparticle array consists of metal particles with a diameter of 0.5-5 nanometers. The interactions among them produce highly correlated behaviors.)

Joining biological to man-made materials is the first step to a whole new materials assembly technique that will operate on the nanoscale. Interactions between precisely arranged metallic nanoparticles could lead to new physics discoveries - as well as to new mechanisms for computing, signal processing, and sensing.

"Highly interacting and correlated systems will be extremely important in creating future robust nanoscale electronic devices," said UCLA Engineering's Kang Wang, one of the team members involved in the research.

Basic studies of such nanoparticle arrays have in the past been hampered by the need to fabricate test structures with extreme control and precision. Most semi conducting devices, such as computer chips, are made from the top down. Patterns are imposed on the material and etched into it. The biological assembly technique aims at building from the bottom up, atom by atom or molecule by molecule.

"By exploiting biology to precisely control size, spacing, composition, and coupling in the arrays, we will be able to examine the effects of electronic, magnetic, and optical interactions at much smaller dimensions than in the past. This will open a wide range of unbroken ground for exploring new physics," said electrical and computer engineering professor Richard A. Kiehl of the University of Minnesota, who is leading the effort. Kiehl has a wide-ranging experience in investigating the potential of novel fabrication techniques, physical structures, and architectures for electronics.

The team members from the six universities include two professors from the UCLA Henry Samueli School of Engineering and Applied Science, Yu Huang (materials science) and Kang L. Wang (electrical engineering), as well as UCLA professor Todd O. Yeates (biochemistry); New York University professors Andrew D. Kent (physics) and Nadrian C. Seeman (chemistry); University of Minnesota professor Richard A. Kiehl (electrical and computer engineering); University of Texas at Austin professor Allan H. MacDonald (physics); University of Pennsylvania professor Christopher B. Murray (chemistry); and Columbia University professor Colin Nuckolls (chemistry).

Kiehl and Seeman have previously collaborated in the first demonstration of metallic nanoparticle assembly by DNA scaffolding, which will be central to this project. Seeman will exploit DNA nanotechnology to construct 2D and 3D scaffolding for the nanoparticle arrays, while Huang and Yeates will use peptides and proteins to make nanoparticle clusters for assembly onto the scaffolding. Murray and Nuckolls will synthesize metallic and magnetic nanoparticles with organic shells that will self-assemble to the scaffolding and control the interparticle coupling. Kent, Kiehl, and Wang will carry out experiments to characterize the electronic, magnetic, and optical properties of the arrays. Kiehl and Wang also have been collaborating for the past four years at the Center on Functional Engineered Nano Architectonics (FENA), a multi-university center headquartered at the UCLA Henry Samueli School of Engineering and Applied Science. MacDonald will provide theoretical guidance for the studies and analysis of the experimental results.

"While our goal is to use biology to construct a 'nanoscale test vehicle' for the systematic study of basic physics today, this work could lead to a practical biological route for the assembly of quantum electronic systems in the future," said Kiehl.

Quantum electronic systems are strongly influenced by interactions both within and between nanoparticles, and hence are extremely sensitive to the quality and dimensions of the structure.

####

About University of California - Los Angeles
Ranked among the top 10 engineering schools among public universities nationwide, the UCLA Henry Samueli School of Engineering and Applied Science is home to seven multimillion dollar interdisciplinary research centers in space exploration, wireless sensor systems, nanomanufacturing and defense technologies, funded by top national and professional agencies.

The award was given by the Army Research Office and is one of 36 awards selected for funding under the highly competitive Department of Defense Multidisciplinary University Research Initiative (MURI). The DoD news release may be viewed at http://www.defenselink.mil/releases/release.aspx?releaseid=10585.

About the UCLA Henry Samueli School of Engineering and Applied Science Established in 1945, the UCLA Henry Samueli School of Engineering and Applied Science offers 28 academic and professional degree programs, including an interdepartmental graduate degree program in biomedical engineering.

For more information, please click here

Contacts:
Melissa Abraham

310-206-0540

Copyright © University of California - Los Angeles

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Quantum Computing

Prototype chip could help make quantum computing practical: Built-in optics could enable chips that use trapped ions as quantum bits August 9th, 2016

Diamond-based light sources will lay a foundation for quantum communications of the future: Electrified quantum diamond can become the heart of quantum networks and computers of the future August 7th, 2016

Record-breaking logic gate 'another important milestone' on road to quantum computers August 7th, 2016

Programmable ions set the stage for general-purpose quantum computers: A new quantum computer module combines proven techniques with advances in hardware and software August 4th, 2016

Nanoelectronics

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

Magnetic atoms arranged in neat rows: FAU physicists enable one-dimensional atom chains to grow August 5th, 2016

Swapping substrates improves edges of graphene nanoribbons: Using inert boron nitride instead of silica creates precise zigzag edges in monolayer graphene August 2nd, 2016

Announcements

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

New flexible material can make any window 'smart' August 23rd, 2016

University of Puerto Rico and NASA back in the news XEI reports August 23rd, 2016

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

New flexible material can make any window 'smart' August 23rd, 2016

Researchers watch catalysts at work August 19th, 2016

Curbing the life-long effects of traumatic brain injury August 19th, 2016

Lab team spins ginger into nanoparticles to heal inflammatory bowel disease August 19th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic