Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > 6 universities collaborate to study biologically assembled quantum electronic systems

Abstract:
US Department of Defense awards $6M for joint research effort

6 universities collaborate to study biologically assembled quantum electronic systems

Los Angeles, CA | Posted on March 19th, 2007

The U.S. Department of Defense is awarding a team of nine professors from six universities $6 million over five years to exploit precise biological assembly for the study of quantum physics in nanoparticle arrays. This research will help to produce a fundamental understanding of quantum electronic systems, which could impact the way future electronics are created.

The UCLA Henry Samueli School of Engineering and Applied Science is teaming up with leading researchers at the University of Minnesota, New York University, the University of Texas at Austin, the University of Pennsylvania and Columbia University to develop biological strategies combining DNA, proteins, and peptides with chemical synthesis techniques to construct arrays of nanoparticles. (A nanoparticle array consists of metal particles with a diameter of 0.5-5 nanometers. The interactions among them produce highly correlated behaviors.)

Joining biological to man-made materials is the first step to a whole new materials assembly technique that will operate on the nanoscale. Interactions between precisely arranged metallic nanoparticles could lead to new physics discoveries - as well as to new mechanisms for computing, signal processing, and sensing.

"Highly interacting and correlated systems will be extremely important in creating future robust nanoscale electronic devices," said UCLA Engineering's Kang Wang, one of the team members involved in the research.

Basic studies of such nanoparticle arrays have in the past been hampered by the need to fabricate test structures with extreme control and precision. Most semi conducting devices, such as computer chips, are made from the top down. Patterns are imposed on the material and etched into it. The biological assembly technique aims at building from the bottom up, atom by atom or molecule by molecule.

"By exploiting biology to precisely control size, spacing, composition, and coupling in the arrays, we will be able to examine the effects of electronic, magnetic, and optical interactions at much smaller dimensions than in the past. This will open a wide range of unbroken ground for exploring new physics," said electrical and computer engineering professor Richard A. Kiehl of the University of Minnesota, who is leading the effort. Kiehl has a wide-ranging experience in investigating the potential of novel fabrication techniques, physical structures, and architectures for electronics.

The team members from the six universities include two professors from the UCLA Henry Samueli School of Engineering and Applied Science, Yu Huang (materials science) and Kang L. Wang (electrical engineering), as well as UCLA professor Todd O. Yeates (biochemistry); New York University professors Andrew D. Kent (physics) and Nadrian C. Seeman (chemistry); University of Minnesota professor Richard A. Kiehl (electrical and computer engineering); University of Texas at Austin professor Allan H. MacDonald (physics); University of Pennsylvania professor Christopher B. Murray (chemistry); and Columbia University professor Colin Nuckolls (chemistry).

Kiehl and Seeman have previously collaborated in the first demonstration of metallic nanoparticle assembly by DNA scaffolding, which will be central to this project. Seeman will exploit DNA nanotechnology to construct 2D and 3D scaffolding for the nanoparticle arrays, while Huang and Yeates will use peptides and proteins to make nanoparticle clusters for assembly onto the scaffolding. Murray and Nuckolls will synthesize metallic and magnetic nanoparticles with organic shells that will self-assemble to the scaffolding and control the interparticle coupling. Kent, Kiehl, and Wang will carry out experiments to characterize the electronic, magnetic, and optical properties of the arrays. Kiehl and Wang also have been collaborating for the past four years at the Center on Functional Engineered Nano Architectonics (FENA), a multi-university center headquartered at the UCLA Henry Samueli School of Engineering and Applied Science. MacDonald will provide theoretical guidance for the studies and analysis of the experimental results.

"While our goal is to use biology to construct a 'nanoscale test vehicle' for the systematic study of basic physics today, this work could lead to a practical biological route for the assembly of quantum electronic systems in the future," said Kiehl.

Quantum electronic systems are strongly influenced by interactions both within and between nanoparticles, and hence are extremely sensitive to the quality and dimensions of the structure.

####

About University of California - Los Angeles
Ranked among the top 10 engineering schools among public universities nationwide, the UCLA Henry Samueli School of Engineering and Applied Science is home to seven multimillion dollar interdisciplinary research centers in space exploration, wireless sensor systems, nanomanufacturing and defense technologies, funded by top national and professional agencies.

The award was given by the Army Research Office and is one of 36 awards selected for funding under the highly competitive Department of Defense Multidisciplinary University Research Initiative (MURI). The DoD news release may be viewed at http://www.defenselink.mil/releases/release.aspx?releaseid=10585.

About the UCLA Henry Samueli School of Engineering and Applied Science Established in 1945, the UCLA Henry Samueli School of Engineering and Applied Science offers 28 academic and professional degree programs, including an interdepartmental graduate degree program in biomedical engineering.

For more information, please click here

Contacts:
Melissa Abraham

310-206-0540

Copyright © University of California - Los Angeles

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Quantum Computing

Quantum networks: Back and forth are not equal distances! July 28th, 2015

The quantum middle man July 2nd, 2015

Freezing single atoms to absolute zero with microwaves brings quantum technology closer: Atoms frozen to absolute zero using microwaves July 2nd, 2015

Producing spin-entangled electrons July 2nd, 2015

Nanoelectronics

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

ORNL researchers make scalable arrays of 'building blocks' for ultrathin electronics July 22nd, 2015

An easy, scalable and direct method for synthesizing graphene in silicon microelectronics: Korean researchers grow 4-inch diameter, high-quality, multi-layer graphene on desired silicon substrates, an important step for harnessing graphene in commercial silicon microelectronics July 21st, 2015

Announcements

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Springer and Tsinghua University Press present the second Nano Research Award: Paul Alivisatos of the University of California Berkeley receives the honor for outstanding contributions in nanoscience July 30th, 2015

European Technology Platform for Nanomedicine and ENATRANS European Consortium Launch the 2nd edition of the Nanomedicine Award: The Award to be presented at BIO-Europe conference in Munich, November 2015 July 30th, 2015

Publication on Atomic Force Microscopy based nanoscale IR Spectroscopy (AFM-IR) persists as a 2015 top downloaded paper July 29th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project