Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > A breakthrough to one-nanometer resolution in optical imaging is the goal of a new Virginia Tech CAREER project

Abstract:
Producing optical images at resolutions as low as one nanometer is the goal of Virginia Tech College of Engineering < http://www.eng.vt.edu/ > researcher Yong Xu, who has received a National Science Foundation (NSF) Faculty Early Career Development Program (CAREER) Award.

A breakthrough to one-nanometer resolution in optical imaging is the goal of a new Virginia Tech CAREER project

BLACKSBURG, VA | Posted on March 19th, 2007

Xu, an assistant professor of electrical and computer engineering, recently secured the five-year CAREER grant, which is worth $400,000 and is NSF's most prestigious award for creative junior faculty who are considered likely to become academic leaders of the future.

"The resolution of most optical microscopes is restricted by the so-called 'diffraction limit,' which means we cannot produce optical images with resolutions higher than a few hundred nanometers," Xu said. "Currently, the most advanced optical microscope can achieve a resolution only as low as 50 nanometers."

In the field of nanotechnology, researchers are discovering ways to arrange atoms into unique structures on the molecular scale. Xu is attempting to produce an optical microscope that can observe nanostructures at a resolution of one nanometer - which is equal in size to approximately one-billionth of a meter, or the diameter of four atoms.

In addition to achieving a breakthrough in arranging nanostructures, Xu hopes that his research will lead to observation of the "vacuum field" at a resolution of one nanometer.

"Vacuum field refers to the tiny amount of electric field fluctuations that can exist in the absence of any sources such as electrons or atoms," Xu explained. "Even though vacuum field cannot be directly measured, without it no light source can emit light. Observing the vacuum field at one nanometer resolution would help scientists solve one of the few remaining mysteries of quantum electrodynamics."

All of this, Xu believes, can ultimately lead to chip-scale quantum information processing and can help boost the pace of discovery in nanophotonics research and engineering.

Every CAREER project includes an educational component, and Xu will help develop a nanophotonics education program at Virginia Tech. He also plans to mentor female and African American students at the university and in local high schools, with the aim of encouraging their participation in nanophotonics research and engineering.

Xu, who is affiliated with Virginia Tech's Center for Photonics Technology < http://www.ee.vt.edu/~photonics > , is investigating a number of related areas, including the development of nanoscale optical sensors for chemical and biological applications. He holds a patent on semiconductor surface lenses and shaped structures and has a patent pending in the area of efficient electro-optical modulation.

Before coming to Virginia Tech in 2004, Xu was a postdoctoral scholar at the California Institute of Technology, where he completed his Ph.D. in physics in 2001. He earned his bachelor's degree in applied physics with a minor in mathematics at Tsinghia University in Beijing, China.

####

About Virginia Tech
The College of Engineering at Virginia Tech is internationally recognized for its excellence in 14 engineering disciplines and computer science. The college's 5,500 undergraduates benefit from an innovative curriculum that provides a "hands-on, minds-on" approach to engineering education, complementing classroom instruction with two unique design-and-build facilities and a strong Cooperative Education Program. With more than 50 research centers and numerous laboratories, the college offers its 1,900 graduate students opportunities in advanced fields of study such as biomedical engineering, state-of-the-art microelectronics, and nanotechnology.

For more information, please click here

Contacts:
Liz Crumbley
(540)231-9772

Copyright © Virginia Tech

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Academic/Education

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

Nanotech Security Featured by Simon Fraser University: Company's Anti-Counterfeiting Technology Developed With the Help of University's 4D LABS Materials Research Institute August 21st, 2016

W.M. Keck Foundation awards Cal State LA a $375,000 research and education grant August 4th, 2016

Thomas Swan and NGI announce unique partnership July 28th, 2016

Announcements

GrapheneCanada 2016 International Conference: Recent advances in technology developments and business opportunities in graphene commercialization August 31st, 2016

FEI Celebrates Shipment of 1,000th Helios DualBeam System: FEIís Helios Family has lead the DualBeam technology race and is widely used across the semiconductor, materials science, life sciences and oil & gas industries August 31st, 2016

Colors from darkness: Researchers develop alternative approach to quantum computing August 31st, 2016

Diamonds and quantum information processing on the nano scale August 31st, 2016

Tools

FEI Celebrates Shipment of 1,000th Helios DualBeam System: FEIís Helios Family has lead the DualBeam technology race and is widely used across the semiconductor, materials science, life sciences and oil & gas industries August 31st, 2016

Diamonds and quantum information processing on the nano scale August 31st, 2016

Designing ultrasound tools with Lego-like proteins August 29th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

FEI Celebrates Shipment of 1,000th Helios DualBeam System: FEIís Helios Family has lead the DualBeam technology race and is widely used across the semiconductor, materials science, life sciences and oil & gas industries August 31st, 2016

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic