Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > NANOIDENT Opens World’s First Manufacturing Facility for Printed Semiconductor-Based Optoelectronic Sensors — NANOIDENT ORGANIC FAB

Abstract:
State-of-the-Art Printed Semiconductor FAB Supports High Volume, Commercial Production

NANOIDENT Opens World’s First Manufacturing Facility for Printed Semiconductor-Based Optoelectronic Sensors — NANOIDENT ORGANIC FAB

LINZ, Austria | Posted on March 13th, 2007

NANOIDENT Technologies AG, the world leader in printed semiconductor-based optoelectronic sensors, today announced it has opened the world's first manufacturing facility for the delivery of printed semiconductor-based optoelectronics. The NANOIDENT ORGANIC FAB (OFAB) GmbH, located in Linz, Austria, supports high-volume production and will use the company's SEMICONDUCTOR 2.0 Platform to deliver printed semiconductor-based products for the NANOIDENT Group of companies, which includes NANOIDENT Technologies AG, NANOIDENT Biometrics GmbH, NANOIDENT Biometrics SAS and BIOIDENT Technologies, Inc. With its environmentally friendly production process, the OFAB can produce printed electronic devices quickly and at a fraction of the cost of a traditional silicon-based semiconductor fab.

"Just as we can't imagine our lives today without electronic devices that rely on silicon-based semiconductors, in the near future the same will apply to printed electronics-based applications," said Craig Cruickshank, principal analyst at cintelliq. "NANOIDENT's OFAB opening is a significant step forward to making the vision of printed electronics a reality with the first of what will be a growing number of printed electronics facilities worldwide."

With the company's SEMICONDUCTOR 2.0 Platform technology (see today's related release: NANOIDENT SEMICONDUCTOR 2.0 Platform Drives Printed Semiconductor Development) and OFAB production facility, NANOIDENT is enabling new, innovative solutions in a wide range of markets, including consumer, industrial, life sciences and security, that were previously cost-prohibitive or simply not able to be created due to the physical constraints of silicon. Moreover, expensive masks, wasted material and dangerous acids used for etching are not needed with printed electronics. Toxic materials are not used in the OFAB, making it a green production process.

"The OFAB opening marks a major industry achievement by bringing a new class of printed electronics from the lab to the fab," said Klaus G. Schroeter, CEO, NANOIDENT. "Printed semiconductor-based optoelectronic devices created by the OFAB will usher in an era of new application types — traditionally not well-suited for silicon — which will improve healthcare, enhance personal and homeland security, as well as drive new industrial applications. These applications are just the beginning, as we look forward to driving continued advancements for printed devices that will enhance peoples' lives."

NANOIDENT's OFAB is fitted with a class 100 cleanroom (less than 100 half-micrometer particles per cubic foot). To produce printed electronics at the OFAB, nanomaterials are deposited onto a substrate using advanced printing methods. The process is extremely fast. For example, traditional chip manufacturing takes approximately two to three months. In the OFAB, the entire process can be completed in hours or days, depending on the application. Prototypes and volume production can be run on the same equipment, which allows for highly customized devices. Production capacity can easily be scaled as needed by adding more equipment.

The NANOIDENT OFAB workflow includes:

* Design - Printed electronics uses many of the same electronic design automation (EDA) tools as conventional integrated circuit (IC) design. The finished layout is translated into files that are read by the printing equipment.
* Materials Management - All materials are subjected to a variety of sophisticated chemical, electrical and mechanical tests.
* Ink Formulation - The "printing inks" used in the OFAB consist of conducting and semiconducting conjugated polymers and/or other nanomaterials that are formulated into solvents, which serve as the functional layers for the printed electronic device.
* Substrate Preparation - Before printing, the substrate must be cleaned and treated to promote adhesion. Printed electronics can use virtually any substrate, including glass, plastic foil, ceramic or even silicon for a complex hybrid system. The substrate can have a variety of mechanical properties - rigid or flexible, flat or curved, thick or as thin as 20 micrometers (one-fifth the thickness of standard paper).
* Functional Layer 1 - n - Printing is done one layer at a time (semiconductor, conductor, insulator, resistor and dielectric), each deposited using an advanced printing system. With feature sizes as small as 10 micrometers, the layers must align precisely for the device to function properly, so the substrate is mounted on an X-Y table, a precision instrument with high-speed linear motors enabling precise control with sub-micrometer accuracy.
* Curing - Each layer must be dry before subsequent layers are printed.
* Dicing - Just as in a silicon fab, many devices can be printed on one substrate. Once all layers have been printed and cured, a computer-controlled laser or glass dicing system precisely cuts the individual pieces apart. All devices then go through an automated electrical/optical test.
* Assembly (optional) - If needed, other components such as a microcontroller, can be attached for complex hybrid systems.
* Packaging - Printed electronics do not generally require traditional, molded plastic chip packaging. In many applications the substrate is the component packaging.

OFAB Webcast

The company will conduct a live Webcast about the OFAB opening today at 8:00 a.m. Eastern Time. To join the live Webcast or to view a recording following the event, please visit http://www.nanoident.com/NewsCenter/webcast.php

For artwork, please visit http://www.nanoident.com/Siteservice/Download_Images.htm

####

About NANOIDENT
NANOIDENT is the world leader in the development and manufacture of printed semiconductor-based optoelectronic sensors. The company’s core technology merges the latest breakthroughs in materials science and nanotechnology with modern printing techniques to create a new class of semiconductor devices. The revolutionary SEMICONDUCTOR 2.0 Platform is the basis of the world’s first commercial printed photonic sensors, enabling a whole new generation of applications in the industrial, biometric and life science markets.

NANOIDENT’s high-speed, environmentally friendly manufacturing process utilizes liquid nanomaterials and additive production techniques. These liquids are used to print electronic circuits on a wide variety of surfaces, producing products in mere hours for prototype as well as high-volume applications. The company’s printed semiconductor devices can be bendable, disposable, light, ultra-thin and large area. They have application specific spectral and electronic properties and can contain light sources and light detectors as well as electronic circuits. These unique characteristics enable cost-effective, custom designed devices for applications such as industrial, chemical, biological, biometric and X-ray sensors, printed OLED displays for smart packaging and electronic signage.

Privately held, the company is headquartered in Linz, Austria, with subsidiaries in Menlo Park, California and Grenoble, France.

For more information, please click here

Contacts:
NANOIDENT Technologies AG
Ulrike Kaiser
Untere Donaulaende 21-25
A-4020 Linz, Austria
Tel.: +43 732 9024 0000
e-Mail:

Copyright © NANOIDENT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Events/Classes

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

June Conference in Grenoble, France, to Explore Pathways to 6G Applications, Including ‘Internet of Senses’, Sustainability, Extended Reality & Digital Twin of Physical World: Organized by CEA-Leti, the Joint EuCNC and 6G Summit Sees Telecom Sector as an ‘Enabler for a Sustainabl June 1st, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project