Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > NANOIDENT Opens World’s First Manufacturing Facility for Printed Semiconductor-Based Optoelectronic Sensors — NANOIDENT ORGANIC FAB

Abstract:
State-of-the-Art Printed Semiconductor FAB Supports High Volume, Commercial Production

NANOIDENT Opens World’s First Manufacturing Facility for Printed Semiconductor-Based Optoelectronic Sensors — NANOIDENT ORGANIC FAB

LINZ, Austria | Posted on March 13th, 2007

NANOIDENT Technologies AG, the world leader in printed semiconductor-based optoelectronic sensors, today announced it has opened the world's first manufacturing facility for the delivery of printed semiconductor-based optoelectronics. The NANOIDENT ORGANIC FAB (OFAB) GmbH, located in Linz, Austria, supports high-volume production and will use the company's SEMICONDUCTOR 2.0 Platform to deliver printed semiconductor-based products for the NANOIDENT Group of companies, which includes NANOIDENT Technologies AG, NANOIDENT Biometrics GmbH, NANOIDENT Biometrics SAS and BIOIDENT Technologies, Inc. With its environmentally friendly production process, the OFAB can produce printed electronic devices quickly and at a fraction of the cost of a traditional silicon-based semiconductor fab.

"Just as we can't imagine our lives today without electronic devices that rely on silicon-based semiconductors, in the near future the same will apply to printed electronics-based applications," said Craig Cruickshank, principal analyst at cintelliq. "NANOIDENT's OFAB opening is a significant step forward to making the vision of printed electronics a reality with the first of what will be a growing number of printed electronics facilities worldwide."

With the company's SEMICONDUCTOR 2.0 Platform technology (see today's related release: NANOIDENT SEMICONDUCTOR 2.0 Platform Drives Printed Semiconductor Development) and OFAB production facility, NANOIDENT is enabling new, innovative solutions in a wide range of markets, including consumer, industrial, life sciences and security, that were previously cost-prohibitive or simply not able to be created due to the physical constraints of silicon. Moreover, expensive masks, wasted material and dangerous acids used for etching are not needed with printed electronics. Toxic materials are not used in the OFAB, making it a green production process.

"The OFAB opening marks a major industry achievement by bringing a new class of printed electronics from the lab to the fab," said Klaus G. Schroeter, CEO, NANOIDENT. "Printed semiconductor-based optoelectronic devices created by the OFAB will usher in an era of new application types — traditionally not well-suited for silicon — which will improve healthcare, enhance personal and homeland security, as well as drive new industrial applications. These applications are just the beginning, as we look forward to driving continued advancements for printed devices that will enhance peoples' lives."

NANOIDENT's OFAB is fitted with a class 100 cleanroom (less than 100 half-micrometer particles per cubic foot). To produce printed electronics at the OFAB, nanomaterials are deposited onto a substrate using advanced printing methods. The process is extremely fast. For example, traditional chip manufacturing takes approximately two to three months. In the OFAB, the entire process can be completed in hours or days, depending on the application. Prototypes and volume production can be run on the same equipment, which allows for highly customized devices. Production capacity can easily be scaled as needed by adding more equipment.

The NANOIDENT OFAB workflow includes:

* Design - Printed electronics uses many of the same electronic design automation (EDA) tools as conventional integrated circuit (IC) design. The finished layout is translated into files that are read by the printing equipment.
* Materials Management - All materials are subjected to a variety of sophisticated chemical, electrical and mechanical tests.
* Ink Formulation - The "printing inks" used in the OFAB consist of conducting and semiconducting conjugated polymers and/or other nanomaterials that are formulated into solvents, which serve as the functional layers for the printed electronic device.
* Substrate Preparation - Before printing, the substrate must be cleaned and treated to promote adhesion. Printed electronics can use virtually any substrate, including glass, plastic foil, ceramic or even silicon for a complex hybrid system. The substrate can have a variety of mechanical properties - rigid or flexible, flat or curved, thick or as thin as 20 micrometers (one-fifth the thickness of standard paper).
* Functional Layer 1 - n - Printing is done one layer at a time (semiconductor, conductor, insulator, resistor and dielectric), each deposited using an advanced printing system. With feature sizes as small as 10 micrometers, the layers must align precisely for the device to function properly, so the substrate is mounted on an X-Y table, a precision instrument with high-speed linear motors enabling precise control with sub-micrometer accuracy.
* Curing - Each layer must be dry before subsequent layers are printed.
* Dicing - Just as in a silicon fab, many devices can be printed on one substrate. Once all layers have been printed and cured, a computer-controlled laser or glass dicing system precisely cuts the individual pieces apart. All devices then go through an automated electrical/optical test.
* Assembly (optional) - If needed, other components such as a microcontroller, can be attached for complex hybrid systems.
* Packaging - Printed electronics do not generally require traditional, molded plastic chip packaging. In many applications the substrate is the component packaging.

OFAB Webcast

The company will conduct a live Webcast about the OFAB opening today at 8:00 a.m. Eastern Time. To join the live Webcast or to view a recording following the event, please visit http://www.nanoident.com/NewsCenter/webcast.php

For artwork, please visit http://www.nanoident.com/Siteservice/Download_Images.htm

####

About NANOIDENT
NANOIDENT is the world leader in the development and manufacture of printed semiconductor-based optoelectronic sensors. The company’s core technology merges the latest breakthroughs in materials science and nanotechnology with modern printing techniques to create a new class of semiconductor devices. The revolutionary SEMICONDUCTOR 2.0 Platform is the basis of the world’s first commercial printed photonic sensors, enabling a whole new generation of applications in the industrial, biometric and life science markets.

NANOIDENT’s high-speed, environmentally friendly manufacturing process utilizes liquid nanomaterials and additive production techniques. These liquids are used to print electronic circuits on a wide variety of surfaces, producing products in mere hours for prototype as well as high-volume applications. The company’s printed semiconductor devices can be bendable, disposable, light, ultra-thin and large area. They have application specific spectral and electronic properties and can contain light sources and light detectors as well as electronic circuits. These unique characteristics enable cost-effective, custom designed devices for applications such as industrial, chemical, biological, biometric and X-ray sensors, printed OLED displays for smart packaging and electronic signage.

Privately held, the company is headquartered in Linz, Austria, with subsidiaries in Menlo Park, California and Grenoble, France.

For more information, please click here

Contacts:
NANOIDENT Technologies AG
Ulrike Kaiser
Untere Donaulaende 21-25
A-4020 Linz, Austria
Tel.: +43 732 9024 0000
e-Mail:

Copyright © NANOIDENT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission: Plasmonic gold nanorods brighten lanthanide-doped upconversion superdots for improved multiphoton bioimaging contrast and enable polarization-selective nonlinear emissions for novel nanoscal May 19th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Racyics Launches ‘makeChip’ Design Service Platform for GLOBALFOUNDRIES’ 22FDX® Technology: Racyics will provide IP and design services as a part of the foundry’s FDXcelerator™ Partner Program May 11th, 2017

Announcements

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Leti to Demo 1st Wireless UNB Transceiver for ‘Massive Internet of Things’ at RFIC 2017 and IMS 2017: Leti Will also Present Three Papers & Two Workshops on 5G Communications IC Design, from RF to mm-Wave, During IMS 2017 and RFIC 2017 in Hawaii May 24th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Events/Classes

Leti to Demo 1st Wireless UNB Transceiver for ‘Massive Internet of Things’ at RFIC 2017 and IMS 2017: Leti Will also Present Three Papers & Two Workshops on 5G Communications IC Design, from RF to mm-Wave, During IMS 2017 and RFIC 2017 in Hawaii May 24th, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Oxford Instruments Asylum Research and Microscopy and Analysis Present the Webinar: “Video-Rate Atomic Force Microscopy Enables New Research Opportunities” May 9th, 2017

Graphene flagship steers towards higher technology readiness level May 4th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project