Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Super small nanoelectrodes can probe microscale environments

Abstract:
Investigating the composition and behavior of microscale environments, including those within living cells, could become easier and more precise with nanoelectrodes being developed at the University of Illinois.

Super small nanoelectrodes can probe microscale environments

CHAMPAIGN, IL | Posted on March 9th, 2007

"The individual nanotube-based probes can be used for electrochemical and biochemical sensing," said Min-Feng Yu, a U. of I. professor of mechanical science and engineering, and a researcher at the university's Beckman Institute. "The position of the nanoelectrodes can be controlled very accurately."

To fabricate the nanoelectrodes, Yu and graduate students Kyungsuk Yum, Jie Hu and Han Na Cho begin by attaching a strong, rigid, boron-nitride nanotube to a much larger, conductive probe. The nanotube will form the insulating core of the nanoelectrode.

The researchers then coat the nanotube with a thin film of gold about 10-50 nanometers thick (a nanometer is 1 billionth of a meter.) The gold layer is then coated with an insulating polymer coating about 10 nanometers thick. Lastly, the researchers use a focused ion beam to slice off the end of the nanotube, exposing a conducting ring of gold sandwiched between an insulating core and an insulating outer ring.

The process yields nanoelectrodes with a diameter of 100 nanometers, and a length of up to 30 microns.

Because the nanotube is attached to a much larger probe, the researchers can manipulate the nanotube like a needle. They can control precisely where the nanotube penetrates a cell, for example, and even pinpoint smaller cell structures, such as the nucleus or mitochondrion.

"Nanoelectrodes offer new opportunities for electrochemical sensing in intracellular environments," said Yu, who will describe the fabrication process and demonstrate the feasibility of nanoelectrodes at the March meeting of the American Physical Society, to be held in Denver, March 5-9. "By functionalizing the active area of the nanoelectrode with an appropriate chemical, we can target the detection of specific chemical species."

The researchers have demonstrated that their nanoelectrode can sense the chemical environment within a droplet 10 microns in diameter. Their next step is to show that the probe can penetrate the cellular membrane of a living cell, without damaging the cell.

The National Science Foundation and the University of Illinois funded the work.

####

About University of Illinois at Urbana-Champaign
At Illinois, research shapes the campus identity, stimulates classroom instruction and serves as a springboard for public engagement activities throughout the world. Opportunities abound for graduate students to develop independent projects and launch their own careers as researchers while working alongside faculty and assisting in their research. Illinois continues its long tradition of groundbreaking accomplishments with remarkable new discoveries and achievements that inspire and enrich the lives of people around the world.

For more information, please click here

Contacts:
James E. Kloeppel

217-244-1073

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Discoveries

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Announcements

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Nanobiotechnology

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Nanobiotix Provides Update on Global Development of Lead Product NBTXR3: Seven clinical trials across the world: More than 2/3 of STS patients recruited in the “act.in.sarc” Phase II/III trial: Phase I/II prostate cancer trial now recruiting in the U.S. November 28th, 2016

From champagne bubbles, dance parties and disease to new nanomaterials: Understanding nucleation of protein filaments might help with Alzheimer's Disease and type 2 Diabetes November 24th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project