Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Novel Biosensor

Abstract:
UA engineering researchers develop biosensor capable of almost real-time detection of glucose, most often used in managing diabetes.

Novel Biosensor

FAYETTEVILLE, ARKANSAS | Posted on March 7th, 2007

Researchers at the University of Arkansas have fabricated and tested a novel biosensor that detects glucose close to real time and with much greater sensitivity than other comparable, biocompatible sensors.

"To manage and control diabetes, patients must continuously monitor blood-glucose levels," said Jining Xie, research assistant professor of electrical engineering. "So they understand the importance of a device that provides rapid response."

The UA sensor, designed and developed by Xie and researchers in the department of electrical engineering, is made of multi-walled carbon nanotubes, which are coated with platinum nanoparticles between 1 and 5 nanometers in diameter. The researchers tested sensors with and without the platinum nanoparticles, and discovered that the carbon nanotubes with platinum exhibited a substantially higher sensitivity than those without platinum.

"At this stage of the research, we believe that the improved electro-chemical performance is due to the platinum nanoparticles," Xie said. "We are currently investigating mechanisms to optimize this performance."

Conducted in the university's Nanomaterials Research Laboratory, the research was performed by Xie and Vijay Varadan, Distinguished Professor of electrical engineering. Shouyan Wang, post-doctoral fellow, and Lavanya Aryasomayajula, graduate assistant, also contributed to the project.

Tests revealed that for every square centimeter tested, a typical platinum-coated nanotube-based glucose sensor had a sensitivity of around 50 micro Amps per mili mole. Micro Amps refer to levels of electrical current. In this case, mili moles are units that describe molecular concentrations of glucose. The sensitivity value of the researchers' device is among the best results reported for glucose biosensors.

Xie said their goal is to further increase the sensitivity value of 52.7 micro Amps per mili mole. Equally important, the UA biosensor has a response time of 15 to 30 seconds, which renders it capable of providing glucose screenings close to real time.

The researchers attributed the improved sensibility to various factors related to the application of platinum to the multi-walled nanotubes. Most importantly, the platinum nanoparticles created a larger electro-active surface area on the carbon nanotubes. Xie said the larger surface area allowed the carbon nanotubes to act as a glucose-oxidase reservoir, which helped create uniform immobilization and high loading of glucose oxides for sensing. In addition, the platinum nanoparticles enhanced electron transfer and facilitated better physical and chemical bonding between glucose oxides and carbon nanotubes.

The researchers' findings were published in the February issue of Nanotechnology, an Institute of Physics Publishing journal. An online version of the article is available at http://www.iop.org/EJ/abstract/-ffissn=0957-4484/-ff30=all/0957-4484/18/6/065503 .

Varadan said there has been no previous research on the use of platinum nanoparticles coated on carbon nanotubes to develop a biosensor capable of detecting blood-glucose concentrations. The research is sponsored by NeoPharma Industries, which hopes to develop a commercial product by the end of 2007.

In addition to his position as distinguished professor, Varadan holds the College of Engineering's Twenty First Century Endowed Chair in Nano- and Bio-Technologies and Medicine and the college's Chair in Microelectronics and High Density Electronics. He is also director of the university's High Density Electronics Center and is a professor of neurosurgery in the College of Medicine at the University of Arkansas for Medical Sciences.

####

For more information, please click here

Contacts:
Jining Xie, research assistant professor, electrical engineering
College of Engineering
(479) 575-8607,

Vijay Varadan, Distinguished Professor, electrical engineering
College of Engineering
(479) 575-2873,

Matt McGowan, science and research communications officer
University Relations
(479) 575-4246,

Copyright © University of Arkansas

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

Discoveries

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission: Plasmonic gold nanorods brighten lanthanide-doped upconversion superdots for improved multiphoton bioimaging contrast and enable polarization-selective nonlinear emissions for novel nanoscal May 19th, 2017

Announcements

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Human Interest/Art

Weizmann Institute of Science Presents: Weizmann Wonder Wander - 4G - is Online June 21st, 2016

Call for NanoArt and Art-Science-Technology Papers June 9th, 2016

Scientists propose non-animal tools for assessing the toxicity of nanomaterials: Particle and Fibre Toxicology publishes recommendations from expert group meeting April 26th, 2016

Are humans the new supercomputer?Today, people of all backgrounds can contribute to solving serious scientific problems by playing computer games. A Danish research group has extended the limits of quantum physics calculations and simultaneously blurred the boundaries between mac April 14th, 2016

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project