Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > News > Radical nanotechnology - how medicine can learn from materials science

March 5th, 2007

Radical nanotechnology - how medicine can learn from materials science

Abstract:
Can a major component of a catalytic converter or a fullerene derivative lead to an eventual treatment for Parkinson's disease or arthritis? Research to date certainly hints at this possibility. In chemistry, radicals (often referred to as free radicals) are atomic or molecular species with unpaired electrons on an otherwise open shell configuration. These unpaired electrons are usually highly reactive, so radicals are likely to take part in chemical reactions. Radicals play an important role in human physiology but, because of their reactivity, they also can can participate in unwanted side reactions resulting in cell damage. Free radicals damage components of the cells' membranes, proteins or genetic material by "oxidizing" them - the same chemical reaction that causes iron to rust. This is called "oxidative stress". Many forms of cancer are thought to be the result of reactions between free radicals and DNA, resulting in mutations that can adversely affect the cell cycle and potentially lead to malignancy. Oxidative stress is believed to play a role in neurodegenerative diseases such as Alzheimer's and Parkinson's.Some of the symptoms of aging such as arteriosclerosis are also attributed to free-radical induced oxidation of many of the chemicals making up the body. Despite the broad role that oxidative stress plays in human disease, medicine has been limited in its development of treatments that counteract free radical damage and the ensuing burden of oxidative stress. In contrast, in the field of engineering, considerable effort has been developed to counter the effects of oxidative stress at the materials science level. Nanotechnology has provided numerous constructs that reduce oxidative damage in engineering applications with great efficiency. A recent review looks at how these nanoengineering concepts could be applied to biomedical problems, ultimately leading to nanotechnology-based therapeutical treatments for oxidative stress-induced diseases.

Source:
nanowerk.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

Treatment of Cell Infection by Nanotechnology September 15th, 2014

Researchers Create World’s Largest DNA Origami September 11th, 2014

Iranian Scientists Discover Nanotechnology Method to Remove Limitations in Tumor Surgery September 11th, 2014

Iranian Nanotechnology Scientists Produce Polymeric Scaffolds for Tissue Engineering September 11th, 2014

Discoveries

‘Small’ transformation yields big changes September 16th, 2014

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

'Squid skin' metamaterials project yields vivid color display: Rice lab creates RGB color display technology with aluminum nanorods September 15th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

‘Small’ transformation yields big changes September 16th, 2014

'Squid skin' metamaterials project yields vivid color display: Rice lab creates RGB color display technology with aluminum nanorods September 15th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE