Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Fungus in hull paint may solve barnacle problem

Abstract:
The microscopic fungus Streptomyces avermitilis lives in the ocean and is extremely poisonous to acorn barnacles and other crustaceans. When an extract from this fungus is added to paint for the hulls of vessels, the surface remains entirely free from barnacles. This has been shown in a new study from Göteborg University in Sweden.

Fungus in hull paint may solve barnacle problem

Sweden | Posted on February 23rd, 2007

"The fungus affects the nervous system of barnacles, and you only need a tiny amount of fungal extract to have an effect," says Hans Elwing, professor at the Department of Cell and Molecular Biology at Göteborg University.

Growths on ships increase friction, which entails higher fuel consumption and more emissions. At Göteborg University there are several research projects on environmentally friendly paints to prevent organisms from attaching on surfaces, so-called anti-foul paints.

The discovery of how this microscopic fungus affects barnacles was made by a research team specializing on surface biophysics. As little as a 0.1-percent mixture of pure fungal extract in paint is sufficient to prevent any growth of acorn barnacles. Previous anti-foul paints have been problematic for the environment since the poison in the paint dissolves and spreads into the water.

"A sensational finding is that the fungal extract is toxic only as long as the paint is on a painted surface. When the paint is dissolved in sea water, the activation of the poison appears not to take place, making the paint apparently harmless to organisms in the open sea," says Hans Elwing.

The scientists are basing their work on a theory that the fungal extract makes the paint imitate the fungus's natural and environmentally friendly defense against being eaten. Hans Elwing also believes that many other organisms in the sea have developed this type of environmentally friendly protection.

"The discovery that this fungal extract counteracts the growth of barnacles will probably create quite a stir around the world. No naturally occurring substance has previously been shown to have such a dramatic effect on barnacles in combination with being so easily degradable in the environment and probably completely safe for humans," says Hans Elwing.

Hans Elwing's research team has joined up with SP Technical Research Institute of Sweden in Borås and Stockholm to develop their ideas. It is hoped that innovations in nanotechnology will facilitate the creation of new anti-fouling paints for boats.

"The fungal extract is probably both cheaper and, above all, more environmentally friendly that the paints based on copper compounds available on the market today," says Hans Elwing.

####

For more information, please click here

Contacts:
Hans Elwing, professor of surface biotechnology
Department of Cell and Molecular Biology
Göteborg University
cell phone: +46 (0)733-60 46 07
phone: +46 (0)31-786 25 62
e-mail:

Copyright © Informationsdienst Wissenschaft e.V.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Discoveries

Energy-efficient spin current can be controlled by magnetic field and temperature: SCMR effect simplifies the design of fundamental spintronic components August 20th, 2018

Color effects from transparent 3D printed nanostructures: New design tool automatically creates nanostructure 3D print templates for user-given colors Scientists present work at prestigious SIGGRAPH conference August 18th, 2018

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

Smallest transistor worldwide switches current with a single atom in solid electrolyte: Milestone of energy efficiency in information technology -- Publication in Advanced Materials August 17th, 2018

Materials/Metamaterials

CTI Materials drives nano commercialization with it's patented surfactant free nanoparticle dispersions August 15th, 2018

Flipping the switch on supramolecular electronics August 14th, 2018

Biomimetic micro/nanoscale fiber reinforced composites August 10th, 2018

Yale-NUS scientist and collaborators solve open theoretical problem on electron interactions August 10th, 2018

Announcements

Energy-efficient spin current can be controlled by magnetic field and temperature: SCMR effect simplifies the design of fundamental spintronic components August 20th, 2018

Color effects from transparent 3D printed nanostructures: New design tool automatically creates nanostructure 3D print templates for user-given colors Scientists present work at prestigious SIGGRAPH conference August 18th, 2018

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

Smallest transistor worldwide switches current with a single atom in solid electrolyte: Milestone of energy efficiency in information technology -- Publication in Advanced Materials August 17th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project