Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New stamping process creates metallic interconnects, nanostructures

Abstract:
Creating high-resolution metallic interconnects is an essential part of the fabrication of microchips and other nanoscale devices. Researchers at the University of Illinois at Urbana-Champaign have developed a simple and robust electrochemical process for the direct patterning of metallic interconnects and other nanostructures.

New stamping process creates metallic interconnects, nanostructures

CHAMPAIGN, IL | Posted on February 21st, 2007

"Solid-state superionic stamping offers a new approach, both as a stand-alone process and as a complement to other nanofabrication techniques, for creating chemical sensors, photonic structures and electrical interconnects," said Nicholas X. Fang, a professor of mechanical science and engineering, and corresponding author of a paper published in the Feb. 14 issue of the journal Nano Letters.

The S4 process uses a patterned superionic material as a stamp, and etches a metallic film by an electrochemical reaction. In superionic materials, metal ions can move almost freely around the crystal lattice. These mobile materials can also be used in batteries and fuel cells.

Unlike conventional processing - in which patterns are first placed on photoresist, followed by metal deposition and subsequent etching - the S4 process creates high-resolution metallic nanopatterns in a single step, potentially reducing manufacturing costs and increasing yields.

The S4 process begins by carving the desired pattern into a stamp made of superionic material, such as silver sulfide, using focused ion beam milling. The stamp is then placed on the substrate and a voltage is applied. This produces an electrochemical reaction at the contact points of the interface.

The reaction generates metal ions, which migrate across the interface into the stamp. As the reaction continues, the stamp progresses into the substrate, generating features complementary to the pattern on the stamp.

"The stamp acts like a sponge, soaking up metal ions," said Fang, who also is a researcher at the university's Beckman Institute for Advanced Science and Technology, and at the Center for Nanoscale Chemical-Electrical-Mechanical Manufacturing Systems.

"The most difficult step in the S4 process is making the stamp extremely flat and smooth," said graduate student Keng H. Hsu, the paper's lead author. "Currently, our resolution for patterning details is 50 nanometers. As better tools for engraving the stamps are developed, we will achieve finer resolution."

Ultimately, the resolution will be limited by the mechanical properties of the stamp, Hsu said.

With Fang and Hsu, co-authors of the paper are Placid M. Ferreira, a U. of I. professor of mechanical science and engineering, and director of NanoCEMMS; and graduate student Peter L. Schultz.

The work was funded by the U.S. Department of Energy and the National Science Foundation.

####

About University of Illinois at Urbana-Champaign
The University of Illinois at Urbana-Champaign is a national and global leader in education and research, attracting the best students from across the country and around the world. You’ll select from 150 undergraduate majors and more than 4,000 courses and learn with an award-winning, world-class faculty. The university takes pride in ensuring students make the most of their time here at Illinois, both in and out of the classroom.

For more information, please click here

Contacts:
James E. Kloeppel
Physical Sciences Editor
217-244-1073


Nicholas Fang
217-265-8262

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Nanoelectronics

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Spin dynamics in an atomically thin semi-conductor February 1st, 2016

New type of nanowires, built with natural gas heating: UNIST research team developed a new simple nanowire manufacturing technique February 1st, 2016

Discoveries

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Making sense of metallic glass February 9th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Announcements

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Superconductivity: Footballs with no resistance - Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications February 9th, 2016

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic