Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New stamping process creates metallic interconnects, nanostructures

Abstract:
Creating high-resolution metallic interconnects is an essential part of the fabrication of microchips and other nanoscale devices. Researchers at the University of Illinois at Urbana-Champaign have developed a simple and robust electrochemical process for the direct patterning of metallic interconnects and other nanostructures.

New stamping process creates metallic interconnects, nanostructures

CHAMPAIGN, IL | Posted on February 21st, 2007

"Solid-state superionic stamping offers a new approach, both as a stand-alone process and as a complement to other nanofabrication techniques, for creating chemical sensors, photonic structures and electrical interconnects," said Nicholas X. Fang, a professor of mechanical science and engineering, and corresponding author of a paper published in the Feb. 14 issue of the journal Nano Letters.

The S4 process uses a patterned superionic material as a stamp, and etches a metallic film by an electrochemical reaction. In superionic materials, metal ions can move almost freely around the crystal lattice. These mobile materials can also be used in batteries and fuel cells.

Unlike conventional processing - in which patterns are first placed on photoresist, followed by metal deposition and subsequent etching - the S4 process creates high-resolution metallic nanopatterns in a single step, potentially reducing manufacturing costs and increasing yields.

The S4 process begins by carving the desired pattern into a stamp made of superionic material, such as silver sulfide, using focused ion beam milling. The stamp is then placed on the substrate and a voltage is applied. This produces an electrochemical reaction at the contact points of the interface.

The reaction generates metal ions, which migrate across the interface into the stamp. As the reaction continues, the stamp progresses into the substrate, generating features complementary to the pattern on the stamp.

"The stamp acts like a sponge, soaking up metal ions," said Fang, who also is a researcher at the university's Beckman Institute for Advanced Science and Technology, and at the Center for Nanoscale Chemical-Electrical-Mechanical Manufacturing Systems.

"The most difficult step in the S4 process is making the stamp extremely flat and smooth," said graduate student Keng H. Hsu, the paper's lead author. "Currently, our resolution for patterning details is 50 nanometers. As better tools for engraving the stamps are developed, we will achieve finer resolution."

Ultimately, the resolution will be limited by the mechanical properties of the stamp, Hsu said.

With Fang and Hsu, co-authors of the paper are Placid M. Ferreira, a U. of I. professor of mechanical science and engineering, and director of NanoCEMMS; and graduate student Peter L. Schultz.

The work was funded by the U.S. Department of Energy and the National Science Foundation.

####

About University of Illinois at Urbana-Champaign
The University of Illinois at Urbana-Champaign is a national and global leader in education and research, attracting the best students from across the country and around the world. You’ll select from 150 undergraduate majors and more than 4,000 courses and learn with an award-winning, world-class faculty. The university takes pride in ensuring students make the most of their time here at Illinois, both in and out of the classroom.

For more information, please click here

Contacts:
James E. Kloeppel
Physical Sciences Editor
217-244-1073


Nicholas Fang
217-265-8262

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

'Neuron-reading' nanowires could accelerate development of drugs for neurological diseases April 12th, 2017

Nanometrics to Announce First Quarter Financial Results on May 2, 2017 April 11th, 2017

AIM Photonics Presents Cutting-Edge Integrated Photonics Technology Developments to Packed House at OFC 2017, the Optical Networking and Communication Conference & Exhibition April 11th, 2017

Photonics breakthough paving the way for improved wireless communication systems: The work could bolster the wireless revolution underway with efficiencies several orders of magnitude April 5th, 2017

Nanoelectronics

Researchers “iron out” graphene’s wrinkles: New technique produces highly conductive graphene wafers April 3rd, 2017

A big leap toward tinier lines: Self-assembly technique could lead to long-awaited, simple method for making smaller microchip patterns March 27th, 2017

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

UC researchers use gold coating to control luminescence of nanowires: University of Cincinnati physicists manipulate nanowire semiconductors in pursuit of making electronics smaller, faster and cheaper March 17th, 2017

Discoveries

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

Wood filter removes toxic dye from water April 21st, 2017

Rice crew revved for Nanocar Race: Nanocar creator James Tour and team take on international competition with single-molecule marvel April 20th, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Announcements

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

National Conference on Nanomaterials, (NCN-2017) April 21st, 2017

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

Nanomechanics, Inc. Unveils New Product at ICMCTF Show April 25th: Nanoindentation experts will launch the new Gemini that measures the interaction of two objects that are sliding across each other – not merely making contact April 21st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project