Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Green chemistry can help nanotechnology mature, Oregon professor says

Abstract:
The safest possible future for advancing nanotechnology in a sustainable world can be reached by using green chemistry, says James E. Hutchison, a professor of chemistry at the University of Oregon.

"Around the world, there is a growing urgency about nanotechnology and its possible health and environmental impacts," Hutchison said in his talk Sunday during a workshop at the annual meeting of the American Association for the Advancement of Science. "There is a concern that these issues will hinder commercialization of this industry."

Green chemistry can help nanotechnology mature, Oregon professor says

Eugene, OR | Posted on February 18th, 2007

Scientists need to take a proactive approach to advancing from the current discovery phase in the creation of nanomaterials into a production phase that is efficient and reduces waste, he said. In his talk, Hutchison suggested a green framework for moving the industry forward.

Nanotechnology refers to research on materials that are nanometer in size - or about 1 billionth of a meter and applicable to virtually every technology and medicine. The field of nanoscience, Hutchison said, is still in the discovery phase, in which new materials are being synthesized for testing for very specific physical properties. During such work, there often are unintended properties of material that potentially can be hazardous to the environment or human health but are, for now, an acceptable risk in secured research environments, he said.

Now is the time, Hutchison said, for scientists to "seriously consider the design of materials, processes and applications that minimize hazard and waste, and this will be essential as nanoscience discoveries transition to the products of nanotechnology."

Hutchison is a leading U.S. innovator in nanofabrication and assembly processes and is a pioneer in the use of green chemistry, which he also teaches to other scientists around the country at workshops. He also is the leader of the Safer Nanomaterials and Nanomanufacturing Initiative, which is funded by an Air Force Research Laboratory grant to the Oregon Nanoscience and Microtechnologies Institute.

Green chemistry, he argues, can sharply reduce the use of toxic solvents and produce safer products with reduced chances for unintended consequences. It also can provide opportunity for new innovations.

"Green chemistry allows us to think about new space and new parameters," Hutchison said. "We have the opportunity to develop the technology correctly from the beginning, rather than trying to rework and entrenched technology."

Hutchison, who is director of the UO's Material Sciences Institute, is developing diverse libraries of nanoparticles, "in which we systematically bury the structural parameters and use in vivo and in vitro assays to determine the relationship between biological response and structural parameters."

One such library covers gold nanoparticles for use in basic research. By studying these nanoparticles, he said, researchers can get an idea of what kinds of new electronic, optical and pharmaceutical products eventually may come to market. Hutchison received a patent in 2005 for his synthesis of gold nanoparticles using green chemistry.

Hutchison told the AAAS gathering that he recently published a technique for purifying nanoparticles that uses membranes with nanopores so small that only impurities pass through - a green approach that allows the purification of particles rapidly without using organic solvents. "Before this accomplishment, purifying the material used up 15 or so liters of solvent per gram of particles," he said. "If solvent is the density of water, that's 15,000 times more mass used to purify it than we get out of it."

The nanotechnology industry, Hutchison said, has reached an important moment in time. "There is an opportunity to stay ahead of the curve," he said. "We should commit ourselves to design these materials and processes to be green from the beginning, and this will provide a lot of freedom from layers of regulation to researchers and companies, allowing for more innovation."

####

For more information, please click here

Contacts:
Jim Barlow, director of research communications

541-346-3481

Copyright © University of Oregon

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

James E. Hutchison's website

Related News Press

Announcements

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Environment

Nanofur for oil spill cleanup: Materials researchers learn from aquatic ferns: Hairy plant leaves are highly oil-absorbing / publication in bioinspiration & biomimetics / video on absorption capacity August 25th, 2016

Researchers watch catalysts at work August 19th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

SLAC, Stanford gadget grabs more solar energy to disinfect water faster: Plopped into water, a tiny device triggers the formation of chemicals that kill microbes in minutes August 15th, 2016

Human Interest/Art

Weizmann Institute of Science Presents: Weizmann Wonder Wander - 4G - is Online June 21st, 2016

Call for NanoArt and Art-Science-Technology Papers June 9th, 2016

Scientists propose non-animal tools for assessing the toxicity of nanomaterials: Particle and Fibre Toxicology publishes recommendations from expert group meeting April 26th, 2016

Are humans the new supercomputer?Today, people of all backgrounds can contribute to solving serious scientific problems by playing computer games. A Danish research group has extended the limits of quantum physics calculations and simultaneously blurred the boundaries between mac April 14th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic