Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


Home > Press > Isotope science to have wide-ranging impact, NSCL researcher says

Nuclear science - and a host of other endeavors that involve the production, study and use of rare isotopes - is undergoing a quiet but dramatic revolution.

That's the conclusion of Brad Sherrill, professor of physics at Michigan State University, who says that the relatively new ability to create novel forms of atomic nuclei may be one of the great, underappreciated transformations in the physical sciences today. Sherrill is based at MSU's National Superconducting Cyclotron Laboratory (NSCL).

Isotope science to have wide-ranging impact, NSCL researcher says

SAN FRANCISCO, CA | Posted on February 17th, 2007

In today's symposium titled, "Femtoscience: From Nuclei to Nuclear Medicine," organized by Sherrill at the American Association forthe Advancement of Science meeting in San Francisco, researchers from NSCL and other laboratories will describe the potential effects in several familiar fields: astrophysics, medicine and national security.

Ernest Rutherford discovered the nuclear nature of matter in the early 1900s. For most of history that followed, scientists curious about the dense knots of protons and neutrons that comprise atomic nuclei have for the most part been limited to studying the roughly 300 stable isotopes that exist in nature.

That's not the case anymore.

Thanks to existing and planned accelerator technology in physics laboratories around the world, scientists may soon have several thousand isotopes at their disposal.

"We're starting to realize that the future of many different disciplines is going to be impacted by this," said Sherrill.

David Dean, a scientist at Oak Ridge National Laboratory in Tennessee, will address the links to the decidedly unfamiliar and fuzzy world of mesoscopic science - the study of self-organization and complexity arising from elementary interactions among many dozens or hundreds of particles. A better grasp of mesoscopic science may help advance the field of quantum computing, among others.

The symposium's title is an allusion to the fact that nuclear scientists currently can tinker with nature on the femtometer scale, roughly one million times smaller than what is used to make measurements in the field of nanotechnology.

The comparison to nanotechnology, or at least to the broader realm of nanoscience, is apt in another sense, Sherrill said. Today, examples abound of basic and applied research in nanoscience. To the casual observer the field may seem to have arrived all of a sudden - a perception that's likely the result of excessive hype by companies hoping to cash in on the latest buzzword - though in fact it is the result of decades of slow, steady advances in physics and engineering.

"In nanoscience, there wasn't one day where scientists said Ďokay, now we can do nanoscience,'" said Sherrill.

Similarly, during the last few decades, scientists at facilities such as NSCL and others in Germany and Japan have been using accelerators to create new forms of nuclei with ratios of protons of neutrons that don't exist on Earth. Plans for new, more powerful accelerators will only add to the stable of isotopes at researchers' disposal. Recently, the National Academies released a draft report in December that lent strong support to the idea a new U.S. radioactive beam facility.

For now, the proliferation of such exotic nuclei is mostly helping to rewrite the physics textbooks that Sherrill read as a graduate student. But soon, he said, the potential impact of this work may be far more dramatic.

"Sometime revolutions develop slowly," he said. "You get in the middle of them before you realize it's really happened."

Additional resources

The unedited draft report of the National Academies' Rare Isotope Science Assessment Committee is available online at:

For more information on plans for next-generation isotope science at NSCL, see

For photos, links and full coverage of MSU at AAAS, see


For more information, please click here

Brad Sherrill
NSCL: (517) 333-6322,
Geoff Koch
NSCL: (517) 333-6482,

Copyright © Michigan State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press


National Space Society Congratulates Blue Origin on First Return to Launch Site of New Shepard November 30th, 2015

Researchers find new phase of carbon, make diamond at room temperature November 30th, 2015

Researchers from Deakin and Drexel develop super-absorbent material to soak up oil spills November 30th, 2015

New study reveals what's behind a tarantula's blue hue: Researchers uncover nanostructures in exoskeleton of blue-haired tarantulas November 30th, 2015


Stanford technology makes metal wires on solar cells nearly invisible to light November 27th, 2015

Nanometrics Announces Upcoming Investor Events November 18th, 2015

FEI and ICON Analytical Demonstrate the Power of TEM for Materials and Life Sciences Research: FEIís Talos scanning transmission electron microscope will be available for demos and workshops at the Indian Institute of Science from 23 November to 15 December 2015 November 17th, 2015

Arrowhead Presents Data Showing Robust Sustained Anti-viral Effects with ARC-520 in Hepatitis B Infected Chimpanzees November 15th, 2015

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project

Car Brands
Buy website traffic