Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Keck gives Rice $1.4M to probe quantum matter

Abstract:
The W.M. Keck Foundation has awarded Rice University $1.4 million to probe
one of the most elusive and mysterious areas of modern physics ­ the bizarre
world of high-temperature superconductors, quantum magnets, and other
solid-state materials that have "strongly correlated" electrons. Rice's
program will bring together theorists and experimentalists specializing in
both ultracold atomic matter and nanoscale condensed-matter physics.

Keck gives Rice $1.4M to probe quantum matter

HOUSTON, TX | Posted on February 12th, 2007

The W.M. Keck Foundation has awarded Rice
University $1.4 million to probe one of the most elusive and mysterious
areas of modern physics ­ the bizarre world of high-temperature
superconductors, quantum magnets, and other solid-state materials that have
"strongly correlated" electrons.

"The past decade has witnessed incredible experimental breakthroughs in both
ultracold atomic physics and condensed matter physics," said physicist Randy
Hulet, co-director of Rice's Keck Program in Quantum Materials. "We believe
Rice has all the pieces in place to make breakthroughs in our understanding
of effects that have puzzled physicists for more than 20 years."

Given the past decade's advances in nanoscale fabrication, laser cooling and
other technologies, many believe the stage is set for a major leap in our
understanding of exotic materials, such as high-temperature superconductors,
where the electrons interact so strongly with one another that their actions
cannot be explained by simple theories.

Unlike electrons in simple metals, which hardly notice one another, the
electrons in high-temperature superconductors and some magnetic materials
are intricately linked. Physicists cannot predict how any single electron in
the material will act without considering the actions of all of its
neighbors. While considerable theoretical efforts have been made, leading to
the development of major new concepts, a unified framework remains elusive
for the understanding of these strongly correlated electronic materials.

"It's the electron-electron interactions and quantum fluctuations in these
classes of materials that both create these great effects and make them so
difficult to explain," said program co-director Doug Natelson, a condensed
matter experimentalist. "In most solid-state materials, physicists can often
get away with ignoring interaction effects because they are overpowered by
stronger forces. That's just not possible in these materials." Natelson said
tunable models of these materials based on either nanostructures or cold
atoms can examine these issues directly.

For example, the advent of laser-cooling technology within the past decade
has allowed physicists working at the atomic scale to create a number of
elusive states of quantum matter, including Bose-Einstein Condensates, or
BECs, which were first predicted by Albert Einstein in the 1920s. Under the
new Keck program, Hulet's lab ­ one of the first in the world to make BECs ­
is preparing a new apparatus to test the two-dimensional Hubbard model, a
theory put forward more than 20 years ago to describe the conduction and
magnetic properties of one type of strongly interacting materials, the
high-temperature superconductors. Hulet said his apparatus will allow the
use of a gas of ultracold atoms in place of the electrons in real materials
to fine tune certain properties of the system and provide theorists with
data that they couldn't otherwise get from a real material.

Similarly, mobile electrons in ³heavy fermion² materials act hundreds of
times more massive than those in ordinary metals because of quantum
interactions with magnetic atoms. The magnetic atoms also talk to each
other. A new experiment in Natelson¹s lab will use a single-molecule
electronic device as a model of these rich materials. Dialing a voltage on
the device will controllably shift the relative importance of the
interactions, so that the system may be tuned from a normal metal state into
a quantum regime with unusual conducting properties. Studies of this quantum
phase transition in real materials have given rise to many open questions,
which the model system is uniquely suited to address.

These projects are two of several that the Keck Program will support. In
all, eight principle investigators at Rice will participate in the program.
These include condensed matter experimentalists Jun Kono and Rui-Rui Du, and
ultracold atom experimentalist Tom Killian. Theoretical connections will be
made by atomic matter theorist Han Pu and condensed matter theorists Qimiao
Si and Carl Bolech.

"Quantum magnetism and strong correlations are subjects in which theory and
experiment have always gone hand in hand over the course of studying real
condensed matter materials," said Si. "In the Keck program, theory will not
only provide the intellectual foundation but will also serve as the
intellectual glue."

Hulet and Natelson said Rice is matching Keck's contribution with $1.4
million of its own. They said the lion's share of program funds will pay the
salaries of three Keck Postdoctoral Fellows and three graduate students who
will focus exclusively on the program's projects.

####

About Rice University
Rice University is consistently ranked one of America’s best teaching and
research universities. It is distinguished by its: size—2,850 undergraduates
and 1,950 graduate students; selectivity—10 applicants for each place in the
freshman class; resources—an undergraduate student-to-faculty ratio of 6-to-1, and the fifth largest endowment per student among American universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work. Rice’s wooded campus is located in the nation’s fourth largest city and on America’s South Coast.

For more information, please click here

Contacts:
Jade Boyd
713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Academic/Education

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Raytheon, UMass Lowell open on-campus research institute: Industry leader’s researchers to collaborate with faculty, students to move key technologies forward through first-of-its-kind partnership October 11th, 2014

SUNY Colleges of Nanoscale Science and Engineering and National Institute for Occupational Safety and Health Announce Expanded Partnership October 2nd, 2014

Nanoelectronics

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Announcements

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Human Interest/Art

Iran-Made Respiratory Nano Masks Provided to Hajj Pilgrims October 23rd, 2014

Japanese gold leaf artists worked on a nano-scale: Study demonstrates X-ray fluorescence spectroscopy is a non-destructive way to date artwork July 3rd, 2014

Harry Potter-style invisibility cloaks: A real possibility next Christmas? Forget socks and shaving foam, the big kids of tomorrow want an invisible cloak for Christmas December 19th, 2013

Chicago Awareness Organization First Not-for-Profit to Sponsor Dog Training to Detect Ovarian Cancer Odorants December 12th, 2013

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

New nanodevice to improve cancer treatment monitoring October 27th, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE