Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Keck gives Rice $1.4M to probe quantum matter

Abstract:
The W.M. Keck Foundation has awarded Rice University $1.4 million to probe
one of the most elusive and mysterious areas of modern physics ­ the bizarre
world of high-temperature superconductors, quantum magnets, and other
solid-state materials that have "strongly correlated" electrons. Rice's
program will bring together theorists and experimentalists specializing in
both ultracold atomic matter and nanoscale condensed-matter physics.

Keck gives Rice $1.4M to probe quantum matter

HOUSTON, TX | Posted on February 12th, 2007

The W.M. Keck Foundation has awarded Rice
University $1.4 million to probe one of the most elusive and mysterious
areas of modern physics ­ the bizarre world of high-temperature
superconductors, quantum magnets, and other solid-state materials that have
"strongly correlated" electrons.

"The past decade has witnessed incredible experimental breakthroughs in both
ultracold atomic physics and condensed matter physics," said physicist Randy
Hulet, co-director of Rice's Keck Program in Quantum Materials. "We believe
Rice has all the pieces in place to make breakthroughs in our understanding
of effects that have puzzled physicists for more than 20 years."

Given the past decade's advances in nanoscale fabrication, laser cooling and
other technologies, many believe the stage is set for a major leap in our
understanding of exotic materials, such as high-temperature superconductors,
where the electrons interact so strongly with one another that their actions
cannot be explained by simple theories.

Unlike electrons in simple metals, which hardly notice one another, the
electrons in high-temperature superconductors and some magnetic materials
are intricately linked. Physicists cannot predict how any single electron in
the material will act without considering the actions of all of its
neighbors. While considerable theoretical efforts have been made, leading to
the development of major new concepts, a unified framework remains elusive
for the understanding of these strongly correlated electronic materials.

"It's the electron-electron interactions and quantum fluctuations in these
classes of materials that both create these great effects and make them so
difficult to explain," said program co-director Doug Natelson, a condensed
matter experimentalist. "In most solid-state materials, physicists can often
get away with ignoring interaction effects because they are overpowered by
stronger forces. That's just not possible in these materials." Natelson said
tunable models of these materials based on either nanostructures or cold
atoms can examine these issues directly.

For example, the advent of laser-cooling technology within the past decade
has allowed physicists working at the atomic scale to create a number of
elusive states of quantum matter, including Bose-Einstein Condensates, or
BECs, which were first predicted by Albert Einstein in the 1920s. Under the
new Keck program, Hulet's lab ­ one of the first in the world to make BECs ­
is preparing a new apparatus to test the two-dimensional Hubbard model, a
theory put forward more than 20 years ago to describe the conduction and
magnetic properties of one type of strongly interacting materials, the
high-temperature superconductors. Hulet said his apparatus will allow the
use of a gas of ultracold atoms in place of the electrons in real materials
to fine tune certain properties of the system and provide theorists with
data that they couldn't otherwise get from a real material.

Similarly, mobile electrons in ³heavy fermion² materials act hundreds of
times more massive than those in ordinary metals because of quantum
interactions with magnetic atoms. The magnetic atoms also talk to each
other. A new experiment in Natelson¹s lab will use a single-molecule
electronic device as a model of these rich materials. Dialing a voltage on
the device will controllably shift the relative importance of the
interactions, so that the system may be tuned from a normal metal state into
a quantum regime with unusual conducting properties. Studies of this quantum
phase transition in real materials have given rise to many open questions,
which the model system is uniquely suited to address.

These projects are two of several that the Keck Program will support. In
all, eight principle investigators at Rice will participate in the program.
These include condensed matter experimentalists Jun Kono and Rui-Rui Du, and
ultracold atom experimentalist Tom Killian. Theoretical connections will be
made by atomic matter theorist Han Pu and condensed matter theorists Qimiao
Si and Carl Bolech.

"Quantum magnetism and strong correlations are subjects in which theory and
experiment have always gone hand in hand over the course of studying real
condensed matter materials," said Si. "In the Keck program, theory will not
only provide the intellectual foundation but will also serve as the
intellectual glue."

Hulet and Natelson said Rice is matching Keck's contribution with $1.4
million of its own. They said the lion's share of program funds will pay the
salaries of three Keck Postdoctoral Fellows and three graduate students who
will focus exclusively on the program's projects.

####

About Rice University
Rice University is consistently ranked one of America’s best teaching and
research universities. It is distinguished by its: size—2,850 undergraduates
and 1,950 graduate students; selectivity—10 applicants for each place in the
freshman class; resources—an undergraduate student-to-faculty ratio of 6-to-1, and the fifth largest endowment per student among American universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work. Rice’s wooded campus is located in the nation’s fourth largest city and on America’s South Coast.

For more information, please click here

Contacts:
Jade Boyd
713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Academic/Education

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

The Physics Department of Imperial College, London, uses the Quorum Q150T to deposit metals and ITO to make plasmonic sensors and electric contact pads July 13th, 2017

Nanoelectronics

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

GLOBALFOUNDRIES Introduces New 12nm FinFET Technology for High-Performance Applications September 20th, 2017

Bit data goes anti-skyrmions September 1st, 2017

Ames Laboratory scientists move graphene closer to transistor applications August 30th, 2017

Announcements

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

Human Interest/Art

Weizmann Institute of Science Presents: Weizmann Wonder Wander - 4G - is Online June 21st, 2016

Call for NanoArt and Art-Science-Technology Papers June 9th, 2016

Scientists propose non-animal tools for assessing the toxicity of nanomaterials: Particle and Fibre Toxicology publishes recommendations from expert group meeting April 26th, 2016

Are humans the new supercomputer?Today, people of all backgrounds can contribute to solving serious scientific problems by playing computer games. A Danish research group has extended the limits of quantum physics calculations and simultaneously blurred the boundaries between mac April 14th, 2016

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Magnetic cellular 'Legos' for the regenerative medicine of the future September 12th, 2017

Quantum detectives in the hunt for the world's first quantum computer September 8th, 2017

New results reveal high tunability of 2-D material: Berkeley Lab-led team also provides most precise band gap measurement yet for hotly studied monolayer moly sulfide August 26th, 2017

A more complete picture of the nano world August 24th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project