Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Keck gives Rice $1.4M to probe quantum matter

Abstract:
The W.M. Keck Foundation has awarded Rice University $1.4 million to probe
one of the most elusive and mysterious areas of modern physics ­ the bizarre
world of high-temperature superconductors, quantum magnets, and other
solid-state materials that have "strongly correlated" electrons. Rice's
program will bring together theorists and experimentalists specializing in
both ultracold atomic matter and nanoscale condensed-matter physics.

Keck gives Rice $1.4M to probe quantum matter

HOUSTON, TX | Posted on February 12th, 2007

The W.M. Keck Foundation has awarded Rice
University $1.4 million to probe one of the most elusive and mysterious
areas of modern physics ­ the bizarre world of high-temperature
superconductors, quantum magnets, and other solid-state materials that have
"strongly correlated" electrons.

"The past decade has witnessed incredible experimental breakthroughs in both
ultracold atomic physics and condensed matter physics," said physicist Randy
Hulet, co-director of Rice's Keck Program in Quantum Materials. "We believe
Rice has all the pieces in place to make breakthroughs in our understanding
of effects that have puzzled physicists for more than 20 years."

Given the past decade's advances in nanoscale fabrication, laser cooling and
other technologies, many believe the stage is set for a major leap in our
understanding of exotic materials, such as high-temperature superconductors,
where the electrons interact so strongly with one another that their actions
cannot be explained by simple theories.

Unlike electrons in simple metals, which hardly notice one another, the
electrons in high-temperature superconductors and some magnetic materials
are intricately linked. Physicists cannot predict how any single electron in
the material will act without considering the actions of all of its
neighbors. While considerable theoretical efforts have been made, leading to
the development of major new concepts, a unified framework remains elusive
for the understanding of these strongly correlated electronic materials.

"It's the electron-electron interactions and quantum fluctuations in these
classes of materials that both create these great effects and make them so
difficult to explain," said program co-director Doug Natelson, a condensed
matter experimentalist. "In most solid-state materials, physicists can often
get away with ignoring interaction effects because they are overpowered by
stronger forces. That's just not possible in these materials." Natelson said
tunable models of these materials based on either nanostructures or cold
atoms can examine these issues directly.

For example, the advent of laser-cooling technology within the past decade
has allowed physicists working at the atomic scale to create a number of
elusive states of quantum matter, including Bose-Einstein Condensates, or
BECs, which were first predicted by Albert Einstein in the 1920s. Under the
new Keck program, Hulet's lab ­ one of the first in the world to make BECs ­
is preparing a new apparatus to test the two-dimensional Hubbard model, a
theory put forward more than 20 years ago to describe the conduction and
magnetic properties of one type of strongly interacting materials, the
high-temperature superconductors. Hulet said his apparatus will allow the
use of a gas of ultracold atoms in place of the electrons in real materials
to fine tune certain properties of the system and provide theorists with
data that they couldn't otherwise get from a real material.

Similarly, mobile electrons in ³heavy fermion² materials act hundreds of
times more massive than those in ordinary metals because of quantum
interactions with magnetic atoms. The magnetic atoms also talk to each
other. A new experiment in Natelson¹s lab will use a single-molecule
electronic device as a model of these rich materials. Dialing a voltage on
the device will controllably shift the relative importance of the
interactions, so that the system may be tuned from a normal metal state into
a quantum regime with unusual conducting properties. Studies of this quantum
phase transition in real materials have given rise to many open questions,
which the model system is uniquely suited to address.

These projects are two of several that the Keck Program will support. In
all, eight principle investigators at Rice will participate in the program.
These include condensed matter experimentalists Jun Kono and Rui-Rui Du, and
ultracold atom experimentalist Tom Killian. Theoretical connections will be
made by atomic matter theorist Han Pu and condensed matter theorists Qimiao
Si and Carl Bolech.

"Quantum magnetism and strong correlations are subjects in which theory and
experiment have always gone hand in hand over the course of studying real
condensed matter materials," said Si. "In the Keck program, theory will not
only provide the intellectual foundation but will also serve as the
intellectual glue."

Hulet and Natelson said Rice is matching Keck's contribution with $1.4
million of its own. They said the lion's share of program funds will pay the
salaries of three Keck Postdoctoral Fellows and three graduate students who
will focus exclusively on the program's projects.

####

About Rice University
Rice University is consistently ranked one of America’s best teaching and
research universities. It is distinguished by its: size—2,850 undergraduates
and 1,950 graduate students; selectivity—10 applicants for each place in the
freshman class; resources—an undergraduate student-to-faculty ratio of 6-to-1, and the fifth largest endowment per student among American universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work. Rice’s wooded campus is located in the nation’s fourth largest city and on America’s South Coast.

For more information, please click here

Contacts:
Jade Boyd
713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Academic/Education

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

The Ottawa Hospital Research Institute uses the ZetaView from Particle Metrix to study membrane microparticles as potential biomarkers for underlying diseases April 12th, 2016

FEI Partners with Five Pharmaceutical Companies, the Medical Research Council and the University of Cambridge to form Cryo-EM Research Consortium April 5th, 2016

SUNY Poly, in Collaboration with the George Washington School of Medicine and Health Sciences and Stony Brook University, Demonstrates Pioneering Method to Visualize and Identify Engineered Nanoparticles in Tissue March 25th, 2016

Nanoelectronics

Exploring phosphorene, a promising new material April 29th, 2016

Physicists build 'electronic synapses' for neural networks April 21st, 2016

With simple process, UW-Madison engineers fabricate fastest flexible silicon transistor April 21st, 2016

All powered up: UCI chemists create battery technology with off-the-charts charging capacity April 21st, 2016

Announcements

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1/2 Study of ARC-521 April 28th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

Human Interest/Art

Scientists propose non-animal tools for assessing the toxicity of nanomaterials: Particle and Fibre Toxicology publishes recommendations from expert group meeting April 26th, 2016

Are humans the new supercomputer?Today, people of all backgrounds can contribute to solving serious scientific problems by playing computer games. A Danish research group has extended the limits of quantum physics calculations and simultaneously blurred the boundaries between mac April 14th, 2016

UCLA nanoscientists engage shoppers in fun conversations March 8th, 2016

Risk Analysis Publishes Non-Animal Strategy to Assess Nanomaterials February 24th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Brookhaven's Oleg Gang Named a Battelle 'Inventor of the Year': Recognized for work using DNA to guide and regulate the self-assembly of nanoparticles into clusters and arrays with controllable properties April 25th, 2016

Zip software can detect the quantum-classical boundary: Compression of experimental data reveals the presence of quantum correlations April 21st, 2016

Making electronics out of coal: Instead of burning up this complex hydrocarbon, let's make devices from it April 20th, 2016

Nano-magnets produce 3-dimensional images: Wide-view 3-dimensional holographic display composed of nano-magnetic pixels April 20th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic