Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


Home > Press > MIT 'optics on a chip' may revolutionize telecom, computing--Research integrates photonic circuitry on a silicon chip

In work that could lead to completely new devices, systems and applications in computing and telecommunications, MIT researchers are bringing the long-sought goal of "optics on a chip"
one step closer to market.

MIT 'optics on a chip' may revolutionize telecom, computing--Research integrates photonic circuitry on a silicon chip

CAMBRIDGE, MA | Posted on February 5th, 2007

In the January 2007 inaugural issue of the journal Nature Photonics,
the team reports a novel way to integrate photonic circuitry on a
silicon chip. Adding the power and speed of light waves to
traditional electronics could achieve system performance
inconceivable by electronic means alone.

The MIT invention will enable such integrated devices to be
mass-manufactured for the first time. And, depending on the growth of
the telecom industry, the new devices could be in demand within five
years, said co-author Erich P. Ippen, the Elihu Thomson Professor of
Electrical Engineering and Physics.

The new technology will also enable supercomputers on a chip with
unique high-speed capabilities for signal processing, spectroscopy
and remote testing, among other fields.

"This breakthrough allows inter- and intra-chip communications
networks that solve the wiring problems of today's computer chips and
computer architectures," said Franz X. Kaertner, a professor of
electrical engineering and computer science.

In addition to Ippen and Kaertner, other members of the MIT team are
Tymon Barwicz (PhD 2005), Michael Watts (PhD 2005), graduate students
Milos Popovic and Peter Rakich, and Henry I. Smith, professor of
electrical engineering and co-director of MIT's Nanostructures

Molding light waves

Microphotonics technology aims to "mold" the flow of light. By using
two different materials that refract light differently, such as
silicon and its oxides, photons can be trapped within a miniscule
hall of mirrors, giving them unique properties.

The stumbling block has been that microphotonics devices are
sensitive to the polarization of light.

Light waves moving through optical fibers can be arbitrarily
vertically or horizontally polarized, and microphotonic circuits
don't work well with that kind of random input. This has meant that
devices used in photonic subsystems and optical communication
networks, for instance, couldn't connect to the outside world without
often having to be assembled piecemeal and painstakingly by hand.

Like polarizing sunglasses, which use vertical polarizers to block
the horizontally oriented light reflected from flat surfaces such as
roads or water, the MIT method of integrating optics on a chip
involves separating the two orientations of polarized light waves.

Splitting the difference

The MIT researchers' innovative solution involves splitting the light
emanating from an optic fiber into two arms-one with horizontally
polarized beams and one with vertical beams-in an integrated, on-chip

Setting these two at right angles to one another, the researchers
rotated the polarization of one of the arms, also in an integrated
way. The beams from the two arms, now oriented the same way, then
pass through identical sets of polarization-sensitive photonic
structures and out the other side of the chip, where the two split
beams are rejoined.

"These results represent a breakthrough in permitting the processing
and switching of arbitrarily polarized input light signals in tightly
confined and densely integrated photonic circuitry," said Ippen. The
innovation means that optical components can be integrated onto a
single silicon chip and mass-produced, cutting costs and boosting
performance and complexity.

The advantage in integrating optics with silicon technology is that
silicon fabrication technology "is already highly developed and
promises precise and reproducible processing of densely integrated
circuits," Kaertner said. "The prospect of integrating the photonic
circuitry directly on silicon electronic chips is ultimately also an
important driver."

In addition to offering a breakthrough in polarization, the MIT chip
also contains first-of-their-kind components in materials meeting
telecommunications specifications.

"Our results illustrate the importance of academic research in
nanofabrication and academia's role in breaking new pathways for the
industry to follow," Smith said. "Creating these devices was only
possible due to the unique nanofabrication facilities at MIT,
enabling fabrication with extraordinary precision."

This work was supported by Pirelli Labs in Milan, Italy, and made use
of MIT's Nanostructures Laboratory and MIT's Scanning Electron Beam
Lithography Facility, both within the Research Laboratory of


About MIT
Today MIT is a world-class educational institution. Teaching and research—with relevance to the practical world as a guiding principle—continue to be its primary purpose. MIT is independent, coeducational, and privately endowed. Its five schools and one college encompass numerous academic departments, divisions, and degree-granting programs, as well as interdisciplinary centers, laboratories, and programs whose work cuts across traditional departmental boundaries.

For more information, please click here

Elizabeth A. Thomson, MIT News Office
Phone: 617-258-5402

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

'Material universe' yields surprising new particle November 28th, 2015

New 'self-healing' gel makes electronics more flexible November 25th, 2015

Physicists explain the unusual behavior of strongly disordered superconductors: Using a theory they developed previously, the scientists have linked superconducting carrier density with the quantum properties of a substance November 25th, 2015

Nanomagnets: Creating order out of chaos: Dresden physicists engrave nanoscale magnets directly into layer of material November 23rd, 2015

Optical computing/ Photonic computing

Strange quantum phenomenon achieved at room temperature in semiconductor wafers November 21st, 2015

'Tuning in' to a fast and optimized internet: A new filter with the widest tuning span ever demonstrated on a silicon chip could help provide the low-cost flexibility needed for the next generation of high-speed optical networks November 18th, 2015

Pioneering research boosts graphene revolution November 17th, 2015

Photons on a chip set new paths for secure communications November 16th, 2015


'Material universe' yields surprising new particle November 28th, 2015

Iranian Scientists Discover New Catalyst to Remove Pharmaceutical Compounds from Wastewater November 28th, 2015

RAMAN Spectrometry Makes Characterization of Various Nanostructures Possible November 28th, 2015

Nanoparticles Boost Impact Resistance of Special Type of Polymer November 28th, 2015

Appointments/Promotions/New hires/Resignations/Deaths

Kerstin Kleese van Dam Named Director of Brookhaven Lab's Computational Science Initiative September 26th, 2015

QD Vision Names Display Industry Veteran Mustafa Ozgen as CEO to Support Aggressive Growth and Market Expansion September 15th, 2015

National Space Society Welcomes Janet Ivey As New NSS Governor: Janet Ivey of Janet's Planet is NOW IN ORBIT as a member of the Board of Governors of the National Space Society August 27th, 2015

National Space Society Welcomes Geoff Notkin As New NSS Governor August 26th, 2015

Human Interest/Art

Bionic liver micro-organs explain off-target toxicity of acetaminophen (Tylenol): Israeli-German partnership aims to replace animal experiments with advanced liver-on-chip devices August 17th, 2015

Omni Nano and Time Warner Cable Partner to Provide Nanotechnology Education to the Boys & Girls Clubs of Los Angeles: A $10,000 Donation to Benefit Youth of Los Angeles County's Boys & Girls Clubs August 4th, 2015

Kalam: versatility personified August 1st, 2015

Pakistani Students Who Survived Terror Attack to Attend Weeklong “NanoDiscovery Institute” at SUNY Poly CNSE in Albany July 29th, 2015


Stanford technology makes metal wires on solar cells nearly invisible to light November 27th, 2015

Strange quantum phenomenon achieved at room temperature in semiconductor wafers November 21st, 2015

Leti and Partners in Silicon Photonics Supply-Chain Project Announce Developments on Three Mature Platforms: PLAT4M Project Focused on Speeding Industrialization of the Technology November 18th, 2015

'Tuning in' to a fast and optimized internet: A new filter with the widest tuning span ever demonstrated on a silicon chip could help provide the low-cost flexibility needed for the next generation of high-speed optical networks November 18th, 2015

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project

Car Brands
Buy website traffic