Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > MIT 'optics on a chip' may revolutionize telecom, computing--Research integrates photonic circuitry on a silicon chip

Abstract:
In work that could lead to completely new devices, systems and applications in computing and telecommunications, MIT researchers are bringing the long-sought goal of "optics on a chip"
one step closer to market.

MIT 'optics on a chip' may revolutionize telecom, computing--Research integrates photonic circuitry on a silicon chip

CAMBRIDGE, MA | Posted on February 5th, 2007

In the January 2007 inaugural issue of the journal Nature Photonics,
the team reports a novel way to integrate photonic circuitry on a
silicon chip. Adding the power and speed of light waves to
traditional electronics could achieve system performance
inconceivable by electronic means alone.

The MIT invention will enable such integrated devices to be
mass-manufactured for the first time. And, depending on the growth of
the telecom industry, the new devices could be in demand within five
years, said co-author Erich P. Ippen, the Elihu Thomson Professor of
Electrical Engineering and Physics.

The new technology will also enable supercomputers on a chip with
unique high-speed capabilities for signal processing, spectroscopy
and remote testing, among other fields.

"This breakthrough allows inter- and intra-chip communications
networks that solve the wiring problems of today's computer chips and
computer architectures," said Franz X. Kaertner, a professor of
electrical engineering and computer science.

In addition to Ippen and Kaertner, other members of the MIT team are
Tymon Barwicz (PhD 2005), Michael Watts (PhD 2005), graduate students
Milos Popovic and Peter Rakich, and Henry I. Smith, professor of
electrical engineering and co-director of MIT's Nanostructures
Laboratory.

Molding light waves

Microphotonics technology aims to "mold" the flow of light. By using
two different materials that refract light differently, such as
silicon and its oxides, photons can be trapped within a miniscule
hall of mirrors, giving them unique properties.

The stumbling block has been that microphotonics devices are
sensitive to the polarization of light.

Light waves moving through optical fibers can be arbitrarily
vertically or horizontally polarized, and microphotonic circuits
don't work well with that kind of random input. This has meant that
devices used in photonic subsystems and optical communication
networks, for instance, couldn't connect to the outside world without
often having to be assembled piecemeal and painstakingly by hand.

Like polarizing sunglasses, which use vertical polarizers to block
the horizontally oriented light reflected from flat surfaces such as
roads or water, the MIT method of integrating optics on a chip
involves separating the two orientations of polarized light waves.

Splitting the difference

The MIT researchers' innovative solution involves splitting the light
emanating from an optic fiber into two arms-one with horizontally
polarized beams and one with vertical beams-in an integrated, on-chip
fashion.

Setting these two at right angles to one another, the researchers
rotated the polarization of one of the arms, also in an integrated
way. The beams from the two arms, now oriented the same way, then
pass through identical sets of polarization-sensitive photonic
structures and out the other side of the chip, where the two split
beams are rejoined.

"These results represent a breakthrough in permitting the processing
and switching of arbitrarily polarized input light signals in tightly
confined and densely integrated photonic circuitry," said Ippen. The
innovation means that optical components can be integrated onto a
single silicon chip and mass-produced, cutting costs and boosting
performance and complexity.

The advantage in integrating optics with silicon technology is that
silicon fabrication technology "is already highly developed and
promises precise and reproducible processing of densely integrated
circuits," Kaertner said. "The prospect of integrating the photonic
circuitry directly on silicon electronic chips is ultimately also an
important driver."

In addition to offering a breakthrough in polarization, the MIT chip
also contains first-of-their-kind components in materials meeting
telecommunications specifications.

"Our results illustrate the importance of academic research in
nanofabrication and academia's role in breaking new pathways for the
industry to follow," Smith said. "Creating these devices was only
possible due to the unique nanofabrication facilities at MIT,
enabling fabrication with extraordinary precision."

This work was supported by Pirelli Labs in Milan, Italy, and made use
of MIT's Nanostructures Laboratory and MIT's Scanning Electron Beam
Lithography Facility, both within the Research Laboratory of
Electronics.

####

About MIT
Today MIT is a world-class educational institution. Teaching and research—with relevance to the practical world as a guiding principle—continue to be its primary purpose. MIT is independent, coeducational, and privately endowed. Its five schools and one college encompass numerous academic departments, divisions, and degree-granting programs, as well as interdisciplinary centers, laboratories, and programs whose work cuts across traditional departmental boundaries.

For more information, please click here

Contacts:
Elizabeth A. Thomson, MIT News Office
Phone: 617-258-5402
Email:

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

AI Technology (AIT) Introduces Novel High Temperature Large Area Underfill with Proven Stress Absorption August 15th, 2014

Iranian Scientists Stabilize Protein on Highly Stable Electrode Surface August 14th, 2014

Optical Computing

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

NUS scientists use low cost technique to improve properties and functions of nanomaterials: By 'drawing' micropatterns on nanomaterials using a focused laser beam, scientists could modify properties of nanomaterials for effective applications in photonic and optoelectric applicat July 22nd, 2014

New NIST metamaterial gives light a one-way ticket July 2nd, 2014

Don't blink! NIST studies why quantum dots suffer from 'fluorescence intermittency' May 22nd, 2014

Discoveries

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Nanotechnology Helps Production of Super Adsorbent Polymers August 21st, 2014

Newly-Developed Nanobiosensor Quickly Diagnoses Cancer August 20th, 2014

Ultrasonic Waves Applied in Production of Graphene Nanosheets August 20th, 2014

Appointments/Promotions/New hires/Resignations/Deaths

Nanometrics CFO to Resign for New Job Opportunity August 8th, 2014

California Nanotechnologies Appoints Dr. Enrique Lavernia to the Board August 6th, 2014

ACS Biomaterials Science & Engineering™: Brand-new journal names editor July 29th, 2014

Organometallics welcomes new editor-in-chief: Paul Chirik, Ph.D. July 22nd, 2014

Human Interest/Art

Japanese gold leaf artists worked on a nano-scale: Study demonstrates X-ray fluorescence spectroscopy is a non-destructive way to date artwork July 3rd, 2014

Harry Potter-style invisibility cloaks: A real possibility next Christmas? Forget socks and shaving foam, the big kids of tomorrow want an invisible cloak for Christmas December 19th, 2013

Chicago Awareness Organization First Not-for-Profit to Sponsor Dog Training to Detect Ovarian Cancer Odorants December 12th, 2013

ZEISS Microscopes used to create images for Art Exhibit at Midway Airport: Art of Science: Images from the Institute for Genomic Biology October 25th, 2013

Photonics/Optics/Lasers

Ultra-short pulse lasers & Positioning August 21st, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Laser makes microscopes way cooler: Cooling a nanowire probe with a laser could lead to substantial improvements in the sensitivity of atomic force probe microscopes August 15th, 2014

Molecular engineers record an electron's quantum behavior August 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE