Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Tiny 'Gas-Flow' Sensor Has Industrial, Environmental Applications

Abstract:
Researchers at Purdue University have shown how to create a new class of tiny sensors for applications ranging from environmental protection to pharmaceutical preservation.

Tiny 'Gas-Flow' Sensor Has Industrial, Environmental Applications

WEST LAFAYETTE, Ind. | Posted on February 2nd, 2007

Although similar "gas-flow sensors" are currently being used for a variety of industries, the new sensor is the first that works on the scale of micrometers and nanometers, or millionths and billionths of a meter, respectively, said Steven Wereley, an associate professor of mechanical engineering.

Gas-flow sensors currently used, including those in residential gas meters to determine how much to charge customers, operate on a principle known for at least 100 years. According to that principle, as gas flows over a surface, such as the wall of a pipe or an object flying through the air, molecules of gas nearest the surface remain stationary. The molecules farther away from the surface move progressively faster.

"That model works really well in many situations, including aerodynamics and applications where the scale of the flow is large compared to the size of the molecules," Wereley said.

This principle, however, does not apply to gas flowing through channels on the scale of micrometers or nanometers, meaning ordinary designs will not work for sensors needed for applications on those scales. In such applications, gas molecules immediately adjacent to the wall of a tube do flow and are said to "slip."

"This exception to the model carries important design implications," Wereley said.

Findings will be detailed in a research paper to be published in the February issue of the Journal of Micromechanics and Microengineering. The paper was written by Wereley and Jaesung Jang, a postdoctoral research associate in Purdue's School of Electrical and Computer Engineering.

The paper describes how the sensor is designed.

As gas flows through a tiny channel, some of it is diverted into a reservoir, where it pushes against a silicon diaphragm coated with metal. As the diaphragm balloons outward from the pressure of the gas, it comes close to an electronic device called a capacitor, which stores an electric charge. The closer it comes to the capacitor, the more it affects the capacitance in the device. The changing capacitance is related to a difference in pressure, and a mathematical model is then used to precisely measure how much gas is flowing through the sensor based on the changing pressure.

Because of the channel's diameter, which is 128 microns, barely wider than a human hair, it is extremely sensitive to small gas flows, Wereley said.

Gas-flow sensors that operate on the scale of micrometers and nanometers could have applications in environmental protection, particularly to measure the leakage of hydrocarbon fumes from fuel tanks in new cars on the manufacturing line. Federal environmental guidelines specify how much leakage is allowable.

Automakers currently test empty fuel tanks by pressurizing them with a gas, such as helium, and then measuring whether the pressure drops, indicating leakage. The test is limited because, while it can determine whether a tank is leaking, it cannot reveal how severe the leak is. Using a sensor capable of measuring gas flow on small scales would make it possible to yield more accurate data.

An accurate test also could be applied to the pharmaceutical industry, which preserves drugs in packages filled with a gas free of the molds and impurities of ambient air. Pharmaceuticals are shipped and stored in the packaging, and the industry tests packages for leakage, but gas-flow sensors could be used to test them more accurately.

The Purdue researchers worked with industry to develop the sensors, which currently are too costly to be manufactured profitably. The research is associated with the Microfluidics Laboratory at the Birck Nanotechnology Center in Purdue's Discovery Park.

The research, which has concluded, was funded by the Indiana 21st Century Research and Technology Fund and Advanced Test Concepts Inc. in Indianapolis.

####

About Purdue University
Discovery Park was established to create a combinational power greater than any individual strength, and to serve as a catalyst for drawing faculty, staff, and students to reach into other disciplines and projects in order to take Purdue to the cutting edge of academic work.

An environment where projects can flourish through shared talk, shared work, and shared innovation is the reward for creating a culture in the university setting that moves away from individual work done in isolation. Discovery Park aims to link Purdue University more closely with the Indiana and U.S. economies, further strengthening and defining those relationships.

For more information, please click here

Contacts:
Steven Wereley, 765-494-5624,

Emil Venere, Purdue University News Service, 765-494-4709,

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Steven Wereley

Related News Press

Sensors

“Cysteine Rose” Wins 2016 Thermo Fisher Scientific Electron Microscopy Image Contest: Thermo Fisher honors Andrea Jacassi of the Italian Institute of Technology for image of cysteine crystals using focused ion beam techniques March 27th, 2017

UC researchers use gold coating to control luminescence of nanowires: University of Cincinnati physicists manipulate nanowire semiconductors in pursuit of making electronics smaller, faster and cheaper March 17th, 2017

Optical fingerprint can reveal pollutants in the air: Researchers at Chalmers University of Technology have proposed a new, sophisticated method of detecting molecules with sensors based on ultra-thin nanomaterials March 15th, 2017

New optical nanosensor improves brain mapping accuracy, opens way for more applications: Potassium-sensitive fluorescence-imaging method shines light on chemical activity within the brain March 3rd, 2017

Discoveries

Information storage with a nanoscale twist: Discovery of a novel rotational force inside magnetic vortices makes it easier to design ultrahigh capacity disk drives March 28th, 2017

A big leap toward tinier lines: Self-assembly technique could lead to long-awaited, simple method for making smaller microchip patterns March 27th, 2017

Laser activated gold pyramids could deliver drugs, DNA into cells without harm: Microstructures create temporary pores in cells March 27th, 2017

Researchers make flexible glass for tiny medical devices: Glass can bend over and over again on a nanoscale March 27th, 2017

Announcements

Information storage with a nanoscale twist: Discovery of a novel rotational force inside magnetic vortices makes it easier to design ultrahigh capacity disk drives March 28th, 2017

ATTOPSEMI Technology Joins FDXcelerator Program to Deliver Advanced Non-Volatile Memory IP to GLOBALFOUNDRIES 22 FDX® Technology Platform: Leading-edge I-fuse™ brings higher reliability, smaller cell size and ease of programmability for consumer, automotive, and IoT applications March 27th, 2017

Leti and HORIBA Scientific to Host Webinar on Ultrafast Characterization Tool: Plasma Profiling Time-of-Flight Mass Spectrometer Tool Cuts Optimization Time In Layer Deposition and Fabrication of Wide Range of Applications March 27th, 2017

Laser activated gold pyramids could deliver drugs, DNA into cells without harm: Microstructures create temporary pores in cells March 27th, 2017

Environment

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Pulverizing e-waste is green, clean -- and cold: Rice, Indian Institute researchers use cryo-mill to turn circuit boards into separated powders March 21st, 2017

Nanogate Expands Sustainability Management: Nanogate publishes a statement of compliance with the German Sustainability Code for the first time March 15th, 2017

Optical fingerprint can reveal pollutants in the air: Researchers at Chalmers University of Technology have proposed a new, sophisticated method of detecting molecules with sensors based on ultra-thin nanomaterials March 15th, 2017

Industrial

Rare-earths become water-repellent only as they age March 22nd, 2017

CRMGroup in Belgium uses a Deben three point bending stage in the development of new steel & coated steel products for automotive and other industrial applications March 21st, 2017

Imaging the inner workings of a sodium-metal sulfide battery for first time: Understanding how the structural and chemical makeup of the material changes during the charge/discharge process could help scientists advance battery design for future energy storage needs March 9th, 2017

Rice lab expands palette for color-changing glass: Nanophotonics team creates low-voltage, multicolor, electrochromic glass March 8th, 2017

Human Interest/Art

Weizmann Institute of Science Presents: Weizmann Wonder Wander - 4G - is Online June 21st, 2016

Call for NanoArt and Art-Science-Technology Papers June 9th, 2016

Scientists propose non-animal tools for assessing the toxicity of nanomaterials: Particle and Fibre Toxicology publishes recommendations from expert group meeting April 26th, 2016

Are humans the new supercomputer?Today, people of all backgrounds can contribute to solving serious scientific problems by playing computer games. A Danish research group has extended the limits of quantum physics calculations and simultaneously blurred the boundaries between mac April 14th, 2016

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project