Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Mighty Nanofibers Could Mean Stronger, Lighter Materials

Abstract:
Bigger may be better, but tinier is stronger. So say scientists at the Technion-Israel Institute of Technology, who have shown that tiny polymer nanofibers become much stronger when their diameters shrink below a certain size. Their research could make possible stronger fabrics that use less material.

Mighty Nanofibers Could Mean Stronger, Lighter Materials

New York & Israel | Posted on January 31st, 2007

Bigger may be better, but tinier is stronger. So say scientists at the Technion-Israel Institute of Technology, who have shown that tiny polymer nanofibers become much stronger when their diameters shrink below a certain size. Their research, published in the January issue of Nature Nanotechnology, could make possible stronger fabrics that use less material.

Professor Eyal Zussman and Dr. Oleg Gendelman of the Faculty of Mechanical Engineering are the first to propose an explanation for this surprising behavior in very thin fibers.

When the researchers measured the mechanical properties of nylon nanofibers, they found the critical diameter - the diameter at which the nylon nanofiber abruptly becomes stiffer—to be approximately 500 nanometers (about as thick as a spider web strand, or 100 times thinner than a human hair). They explained the abrupt increase in stiffness by considering the molecular structure inside the polymer fiber.

According to Zussman, each polymer nanofiber is made up of countless large, complex molecules called macromolecules. Macromolecules try to align themselves when the fiber is forming, but since they are so long and tangled, it is impossible for them to sort themselves out and align uniformly throughout the entire nanofiber. As a result, the nanofiber is a patchwork of differently oriented macromolecule regions. The researchers calculated the size of these regions to be roughly the same as the critical diameter of the nanofiber (the diameter at which the fiber stiffness abruptly increases).

"When the diameter of the fiber is much larger than the size of the oriented regions, the macromolecules can move relative to one another," says Zussman. "But as the diameter of the fiber shrinks, these oriented regions become constrained and the macromolecules are unable to easily move relative to one another. So they become stuck against each other like cars in a traffic jam, and the resulting nanofiber is much stiffer."

Although Professor Zussman and his colleagues focused on a certain type of nanofiber, they say their basic physical idea will help scientists understand the novel physical properties of a wide range of nanofibers and other nanostructures. Practical applications include lighter protective vests and stronger fabrics.

Also participating in the research, which is part of activities of the Russell Berrie Nanotechnology Institute at the Technion, were Dr. Arkadii Arinstein and graduate student Michael Burman.

####

About American Technion Society
Based in New York City, the American Technion Society is the leading American organization supporting higher education in Israel, with 17 offices around the country.

The Technion-Israel Institute of Technology is Israel's leading science and technology university. Home to the country’s winners of the Nobel Prize in science, it commands a worldwide reputation for its pioneering work in nanotechnology, computer science, biotechnology, water-resource management, materials engineering, aerospace and medicine. The majority of the founders and managers of Israel's high-tech companies are alumni.

For more information, please click here

Contacts:
Kevin Hattori

212.407.6319

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Announcements

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Made-in-Singapore rapid test kit detects dengue antibodies from saliva: IBN's MedTech innovation simplifies diagnosis of infectious diseases January 29th, 2015

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables January 28th, 2015

Spider electro-combs its sticky nano-filaments January 28th, 2015

Military

Detecting chemical weapons with a color-changing film January 28th, 2015

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables January 28th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Textiles/Clothing

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

Anti-microbial coatings with a long-term effect for surfaces – presentation at nano tech 2015 in Japan January 21st, 2015

Laser-induced graphene 'super' for electronics: Rice University researchers test flexible, three-dimensional supercapacitors January 14th, 2015

Human Interest/Art

OCSiAl supports NanoART Imagery Contest January 23rd, 2015

EnvisioNano: An image contest hosted by the National Nanotechnology Initiative (NNI) January 22nd, 2015

Oxford Instruments Asylum Research Announces AFM Image Contest Winners January 11th, 2015

Longhorn beetle inspires ink to fight counterfeiting November 5th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE