Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Mighty Nanofibers Could Mean Stronger, Lighter Materials

Abstract:
Bigger may be better, but tinier is stronger. So say scientists at the Technion-Israel Institute of Technology, who have shown that tiny polymer nanofibers become much stronger when their diameters shrink below a certain size. Their research could make possible stronger fabrics that use less material.

Mighty Nanofibers Could Mean Stronger, Lighter Materials

New York & Israel | Posted on January 31st, 2007

Bigger may be better, but tinier is stronger. So say scientists at the Technion-Israel Institute of Technology, who have shown that tiny polymer nanofibers become much stronger when their diameters shrink below a certain size. Their research, published in the January issue of Nature Nanotechnology, could make possible stronger fabrics that use less material.

Professor Eyal Zussman and Dr. Oleg Gendelman of the Faculty of Mechanical Engineering are the first to propose an explanation for this surprising behavior in very thin fibers.

When the researchers measured the mechanical properties of nylon nanofibers, they found the critical diameter - the diameter at which the nylon nanofiber abruptly becomes stiffer—to be approximately 500 nanometers (about as thick as a spider web strand, or 100 times thinner than a human hair). They explained the abrupt increase in stiffness by considering the molecular structure inside the polymer fiber.

According to Zussman, each polymer nanofiber is made up of countless large, complex molecules called macromolecules. Macromolecules try to align themselves when the fiber is forming, but since they are so long and tangled, it is impossible for them to sort themselves out and align uniformly throughout the entire nanofiber. As a result, the nanofiber is a patchwork of differently oriented macromolecule regions. The researchers calculated the size of these regions to be roughly the same as the critical diameter of the nanofiber (the diameter at which the fiber stiffness abruptly increases).

"When the diameter of the fiber is much larger than the size of the oriented regions, the macromolecules can move relative to one another," says Zussman. "But as the diameter of the fiber shrinks, these oriented regions become constrained and the macromolecules are unable to easily move relative to one another. So they become stuck against each other like cars in a traffic jam, and the resulting nanofiber is much stiffer."

Although Professor Zussman and his colleagues focused on a certain type of nanofiber, they say their basic physical idea will help scientists understand the novel physical properties of a wide range of nanofibers and other nanostructures. Practical applications include lighter protective vests and stronger fabrics.

Also participating in the research, which is part of activities of the Russell Berrie Nanotechnology Institute at the Technion, were Dr. Arkadii Arinstein and graduate student Michael Burman.

####

About American Technion Society
Based in New York City, the American Technion Society is the leading American organization supporting higher education in Israel, with 17 offices around the country.

The Technion-Israel Institute of Technology is Israel's leading science and technology university. Home to the country’s winners of the Nobel Prize in science, it commands a worldwide reputation for its pioneering work in nanotechnology, computer science, biotechnology, water-resource management, materials engineering, aerospace and medicine. The majority of the founders and managers of Israel's high-tech companies are alumni.

For more information, please click here

Contacts:
Kevin Hattori

212.407.6319

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Announcements

Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting April 15th, 2014

A molecular approach to solar power: Switchable material could harness the power of the sun — even when it’s not shining April 15th, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Biologists Develop Nanosensors to Visualize Movements and Distribution of Plant Stress Hormone April 15th, 2014

Military

Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting April 15th, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Scalable CVD process for making 2-D molybdenum diselenide: Rice, NTU scientists unveil CVD production for coveted 2-D semiconductor April 8th, 2014

Rebar technique strengthens case for graphene: Rice University lab makes hybrid nanotube-graphene material that promises to simplify manufacturing April 7th, 2014

Textiles/Clothing

Making clothes from sugar: IBN researchers have found a green and efficient method to produce nylon from sugar April 1st, 2014

FibeRio® to Present “Polyester Nanofibers for Oil and Fuel Filtration" at AFS Spring 2014 Conference March 19th, 2014

Fabrics Resistant to Growth of Microbes Produced in Iran March 17th, 2014

Iran Produces Self-Cleaning Coatings for Textile Industries March 12th, 2014

Human Interest/Art

Harry Potter-style invisibility cloaks: A real possibility next Christmas? Forget socks and shaving foam, the big kids of tomorrow want an invisible cloak for Christmas December 19th, 2013

Chicago Awareness Organization First Not-for-Profit to Sponsor Dog Training to Detect Ovarian Cancer Odorants December 12th, 2013

ZEISS Microscopes used to create images for Art Exhibit at Midway Airport: Art of Science: Images from the Institute for Genomic Biology October 25th, 2013

New potential for touch screens found at your fingertips September 17th, 2013

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE