Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > News > New single-molecule imaging system ends pRNA debate over phi29 motor

January 30th, 2007

New single-molecule imaging system ends pRNA debate over phi29 motor

Abstract:
A Purdue University researcher has created a single-molecule imaging system to view deoxyribonucleic acid (DNA), ribonucleic acid (RNA) and other tiny biological molecules. This ability helps settle a seven-year debate within the virology and nanomedicine fields over the shape and structure of a tiny biological motor that has potential use in nanotechnology and nanomedicine, including the diagnosis and treatment of diseases such as cancer, AIDS and influenza.

Scientists had disputed the number of packaging ribonucleic acid (pRNA) molecules contained in the DNA-packaging motor of the phi29 virus. The number of these molecules present determines the shape of the motor and expands understanding of the way it works. The new imaging system definitively concludes that six pRNA molecules were present. The research, funded by the National Institutes of Health, will be published in the upcoming issue of the European Molecular Biology Organization Journal, EMBOJ.

Source:
physorg.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

New electronic stent could provide feedback and therapy — then dissolve May 27th, 2015

Seeing the action: UCSB researchers develop a novel device to image the minute forces and actions involved in cell membrane hemifusion May 27th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Discoveries

Chemists discover key reaction mechanism behind the highly touted sodium-oxygen battery May 28th, 2015

New technique speeds nanoMRI imaging: Multiplexing technique for nanoscale magnetic resonance imaging developed by researchers in Switzerland cuts normal scan time from two weeks to two days May 28th, 2015

Squeezed quantum cats May 28th, 2015

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Nano-capsules designed for diagnosing malignant tumours: Japanese researchers have developed adaptable nano-capsules that can help in the diagnosis of glioblastoma cells - a highly invasive form of brain tumours May 28th, 2015

Chemists discover key reaction mechanism behind the highly touted sodium-oxygen battery May 28th, 2015

New technique speeds nanoMRI imaging: Multiplexing technique for nanoscale magnetic resonance imaging developed by researchers in Switzerland cuts normal scan time from two weeks to two days May 28th, 2015

Squeezed quantum cats May 28th, 2015

Human Interest/Art

INSIDDE: Uncovering the real history of art using a graphene scanner May 21st, 2015

Winner Announced for NNI’s First ‘EnvisioNano’ Nanotechnology Image Contest May 6th, 2015

To Conserve London's 300-Year-Old Masterpiece, Nanotech & Drones April 12th, 2015

2015 Nanonics Image Contest January 29th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project