Nanotechnology Now

Heifer International

Wikipedia Affiliate Button


Home > Press > Turning an axel mounted molecular wheel

Researchers at the Centre for Material Development and Structural Studies in Toulouse (CEMES-CNRS) and their colleagues at the Free University of Berlin have, for the first time, managed to control the rotation of a wheel in a molecule. This nano-mechanical experiment concerned an 0.7 nm diameter wheel attached to a 0.6 nm-long axle. This success opens the way to creating the first molecular machines. The study was published on-line on January 21, 2007, in the journal Nature Nanotechnology.

Turning an axel mounted molecular wheel

Toulouse, France | Posted on January 23rd, 2007

In the history of inventions, the wheel has been at the origin of major scientific and technological developments: from the creation of astronomical clocks or calculating machines to motor-drawn vehicles and other motor cars. At the molecular scale, the smallest at which a wheel can be created, it represents a major challenge for chemists and physicists. Since the end of the 1990s, chemists in the CEMES have been working on the design of molecular machines equipped with wheels. Step by step, they have studied this field in depth in collaboration with their colleagues at IBM in Zurich and then at the Free University of Berlin. After observing the random rotation of a flat molecular wheel in 1998, designing and synthesising a mono-molecular wheelbarrow in 2003 and then synthesising a molecular motor in 2005, they last year managed to operate the first molecular rack with a pinion of 1.2 nm in diameter.

Today, these researchers have shown that a molecular wheel mounted on an axle (as short as possible) could rotate. They have succeeded in controlling its direction of rotation. To prepare this nano-mechanical experiment, the CEMES-CNRS chemists designed and synthesised simple molecular machinery made up of an 0.6 nm-long axle-molecule, bound chemically with two triptycene wheels with a diameter of around 0.7 nm (Figure 1). The type of wheel and surface were very carefully chosen. Two notched, "tyre-less" wheels were used because of their maximum adherence to the running surface, an ultraclean copper plate. Its natural roughness presented rows of copper atoms separated by a distance of about 0.3 nm, and about one atom high.

Fig. 1. The wheel-axle-wheel molecule developed by the CEMES-CNRS 2

The experiment consisted in delicately placing wheel-axle-wheel molecules on the copper surface and then using scanning tunnelling microscopy (STM) imaging at very low temperature to detect molecules lying in the correct orientation with respect to the rows of atoms on the surface. The STM tip positioned on a wheel made the latter rotate.

By advancing the STM tip (Figure 2), the microscope behaved like a finger to trigger the rotation. Fig. 2. Movement of the STM probe on a wheel inducing a rotation of 120°.

The STM operator followed real-time on his control screen any variations in electrical current passing through the wheel while he was rolling it. Depending on the handling conditions of the molecule, he could choose to turn one wheel and then the other while the molecule advanced, or make the molecule advance without rolling its wheels.

This experiment enabled an approach to understanding at the mono-molecular scale the functionalities that are already known at a macroscopic scale. Without a wheel, some technological advances could not function. For example, separating the seating or technical parts of a vehicle is essential to prevent friction. At a molecular scale, the reasoning and consequences are similar. If the plate of the molecule is not separated from the surface, there is interaction and hence destruction. These results open the way to creating molecular machines. A goal? To be able, one day, to embark in a single molecule the entire machinery of a nano-vehicle: four wheels, a motor, etc.


For more information, please click here

Monica McCarthy


Copyright © CEMES-CNRS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Molecular Machines

Monitoring the real-time deformation of carbon nanocoils under axial loading February 18th, 2015

Stomach acid-powered micromotors get their first test in a living animal January 27th, 2015

Nanoshuttle wear and tear: It's the mileage, not the age January 26th, 2015

Mysteries of ‘Molecular Machines’ Revealed: Phenix software uses X-ray diffraction spots to produce 3-D image December 22nd, 2014

Molecular Nanotechnology

Monitoring the real-time deformation of carbon nanocoils under axial loading February 18th, 2015

Nanotechnology: Better measurements of single molecule circuits February 18th, 2015

Half spheres for molecular circuits: Corannulene shows promising electronic properties February 17th, 2015

Tiny robotic 'hands' could improve cancer diagnostics, drug delivery February 4th, 2015


The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Democratizing synthetic biology: New method makes research cheaper, faster, and more accessible March 3rd, 2015

Pens filled with high-tech inks for do-it-yourself sensors March 3rd, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Human Interest/Art

2015 Nanonics Image Contest January 29th, 2015

OCSiAl supports NanoART Imagery Contest January 23rd, 2015

EnvisioNano: An image contest hosted by the National Nanotechnology Initiative (NNI) January 22nd, 2015

Oxford Instruments Asylum Research Announces AFM Image Contest Winners January 11th, 2015

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project

© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE