Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Turning an axel mounted molecular wheel

Abstract:
Researchers at the Centre for Material Development and Structural Studies in Toulouse (CEMES-CNRS) and their colleagues at the Free University of Berlin have, for the first time, managed to control the rotation of a wheel in a molecule. This nano-mechanical experiment concerned an 0.7 nm diameter wheel attached to a 0.6 nm-long axle. This success opens the way to creating the first molecular machines. The study was published on-line on January 21, 2007, in the journal Nature Nanotechnology.

Turning an axel mounted molecular wheel

Toulouse, France | Posted on January 23rd, 2007

In the history of inventions, the wheel has been at the origin of major scientific and technological developments: from the creation of astronomical clocks or calculating machines to motor-drawn vehicles and other motor cars. At the molecular scale, the smallest at which a wheel can be created, it represents a major challenge for chemists and physicists. Since the end of the 1990s, chemists in the CEMES have been working on the design of molecular machines equipped with wheels. Step by step, they have studied this field in depth in collaboration with their colleagues at IBM in Zurich and then at the Free University of Berlin. After observing the random rotation of a flat molecular wheel in 1998, designing and synthesising a mono-molecular wheelbarrow in 2003 and then synthesising a molecular motor in 2005, they last year managed to operate the first molecular rack with a pinion of 1.2 nm in diameter.

Today, these researchers have shown that a molecular wheel mounted on an axle (as short as possible) could rotate. They have succeeded in controlling its direction of rotation. To prepare this nano-mechanical experiment, the CEMES-CNRS chemists designed and synthesised simple molecular machinery made up of an 0.6 nm-long axle-molecule, bound chemically with two triptycene wheels with a diameter of around 0.7 nm (Figure 1). The type of wheel and surface were very carefully chosen. Two notched, "tyre-less" wheels were used because of their maximum adherence to the running surface, an ultraclean copper plate. Its natural roughness presented rows of copper atoms separated by a distance of about 0.3 nm, and about one atom high.

Fig. 1. The wheel-axle-wheel molecule developed by the CEMES-CNRS 2

The experiment consisted in delicately placing wheel-axle-wheel molecules on the copper surface and then using scanning tunnelling microscopy (STM) imaging at very low temperature to detect molecules lying in the correct orientation with respect to the rows of atoms on the surface. The STM tip positioned on a wheel made the latter rotate.

By advancing the STM tip (Figure 2), the microscope behaved like a finger to trigger the rotation. Fig. 2. Movement of the STM probe on a wheel inducing a rotation of 120.

The STM operator followed real-time on his control screen any variations in electrical current passing through the wheel while he was rolling it. Depending on the handling conditions of the molecule, he could choose to turn one wheel and then the other while the molecule advanced, or make the molecule advance without rolling its wheels.

This experiment enabled an approach to understanding at the mono-molecular scale the functionalities that are already known at a macroscopic scale. Without a wheel, some technological advances could not function. For example, separating the seating or technical parts of a vehicle is essential to prevent friction. At a molecular scale, the reasoning and consequences are similar. If the plate of the molecule is not separated from the surface, there is interaction and hence destruction. These results open the way to creating molecular machines. A goal? To be able, one day, to embark in a single molecule the entire machinery of a nano-vehicle: four wheels, a motor, etc.

####

For more information, please click here

Contacts:
Monica McCarthy

0033-144-965-191

Copyright © CEMES-CNRS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Molecular Machines

Structural Insights into the Inner Workings of a Viral Nanomachine April 3rd, 2014

Big data tackles tiny molecular machines:Rice University technique able to analyze conformations of complex molecular machines March 14th, 2014

Advantages emerge in using nanostructured material in the forging process of mechanical components February 28th, 2014

Nanomotors are controlled, for the first time, inside living cells February 10th, 2014

Molecular Nanotechnology

Roomy cages built from DNA: Self-assembling cages are the largest standalone 3-D DNA structures yet, and could one day deliver drugs, or house tiny bioreactors or photonic devices March 13th, 2014

Advantages emerge in using nanostructured material in the forging process of mechanical components February 28th, 2014

Stirring-up atomtronics in a quantum circuit: What's so 'super' about this superfluid February 12th, 2014

Nanomotors are controlled, for the first time, inside living cells February 10th, 2014

Announcements

MRI, on a molecular scale: Researchers develop system that could one day peer into the atomic structure of individual molecules April 20th, 2014

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric April 19th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Human Interest/Art

Harry Potter-style invisibility cloaks: A real possibility next Christmas? Forget socks and shaving foam, the big kids of tomorrow want an invisible cloak for Christmas December 19th, 2013

Chicago Awareness Organization First Not-for-Profit to Sponsor Dog Training to Detect Ovarian Cancer Odorants December 12th, 2013

ZEISS Microscopes used to create images for Art Exhibit at Midway Airport: Art of Science: Images from the Institute for Genomic Biology October 25th, 2013

New potential for touch screens found at your fingertips September 17th, 2013

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE