Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Turning an axel mounted molecular wheel

Abstract:
Researchers at the Centre for Material Development and Structural Studies in Toulouse (CEMES-CNRS) and their colleagues at the Free University of Berlin have, for the first time, managed to control the rotation of a wheel in a molecule. This nano-mechanical experiment concerned an 0.7 nm diameter wheel attached to a 0.6 nm-long axle. This success opens the way to creating the first molecular machines. The study was published on-line on January 21, 2007, in the journal Nature Nanotechnology.

Turning an axel mounted molecular wheel

Toulouse, France | Posted on January 23rd, 2007

In the history of inventions, the wheel has been at the origin of major scientific and technological developments: from the creation of astronomical clocks or calculating machines to motor-drawn vehicles and other motor cars. At the molecular scale, the smallest at which a wheel can be created, it represents a major challenge for chemists and physicists. Since the end of the 1990s, chemists in the CEMES have been working on the design of molecular machines equipped with wheels. Step by step, they have studied this field in depth in collaboration with their colleagues at IBM in Zurich and then at the Free University of Berlin. After observing the random rotation of a flat molecular wheel in 1998, designing and synthesising a mono-molecular wheelbarrow in 2003 and then synthesising a molecular motor in 2005, they last year managed to operate the first molecular rack with a pinion of 1.2 nm in diameter.

Today, these researchers have shown that a molecular wheel mounted on an axle (as short as possible) could rotate. They have succeeded in controlling its direction of rotation. To prepare this nano-mechanical experiment, the CEMES-CNRS chemists designed and synthesised simple molecular machinery made up of an 0.6 nm-long axle-molecule, bound chemically with two triptycene wheels with a diameter of around 0.7 nm (Figure 1). The type of wheel and surface were very carefully chosen. Two notched, "tyre-less" wheels were used because of their maximum adherence to the running surface, an ultraclean copper plate. Its natural roughness presented rows of copper atoms separated by a distance of about 0.3 nm, and about one atom high.

Fig. 1. The wheel-axle-wheel molecule developed by the CEMES-CNRS 2

The experiment consisted in delicately placing wheel-axle-wheel molecules on the copper surface and then using scanning tunnelling microscopy (STM) imaging at very low temperature to detect molecules lying in the correct orientation with respect to the rows of atoms on the surface. The STM tip positioned on a wheel made the latter rotate.

By advancing the STM tip (Figure 2), the microscope behaved like a finger to trigger the rotation. Fig. 2. Movement of the STM probe on a wheel inducing a rotation of 120.

The STM operator followed real-time on his control screen any variations in electrical current passing through the wheel while he was rolling it. Depending on the handling conditions of the molecule, he could choose to turn one wheel and then the other while the molecule advanced, or make the molecule advance without rolling its wheels.

This experiment enabled an approach to understanding at the mono-molecular scale the functionalities that are already known at a macroscopic scale. Without a wheel, some technological advances could not function. For example, separating the seating or technical parts of a vehicle is essential to prevent friction. At a molecular scale, the reasoning and consequences are similar. If the plate of the molecule is not separated from the surface, there is interaction and hence destruction. These results open the way to creating molecular machines. A goal? To be able, one day, to embark in a single molecule the entire machinery of a nano-vehicle: four wheels, a motor, etc.

####

For more information, please click here

Contacts:
Monica McCarthy

0033-144-965-191

Copyright © CEMES-CNRS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Molecular Machines

Legions of nanorobots target cancerous tumors with precision: Administering anti-cancer drugs redefined August 16th, 2016

New remote-controlled microrobots for medical operations July 23rd, 2016

Pushing a single-molecule switch: An international team of researchers from Donostia International Physics Center, Fritz-Haber Institute of the Max Planck Society, University of Liverpool, and the Polish Academy of Sciences has shown a new way to operate a single-molecule switch July 19th, 2016

Researchers harness DNA as the engine of super-efficient nanomachine: New platform detects traces of everything from bacteria to viruses, cocaine and metals July 10th, 2016

Molecular Nanotechnology

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

DNA dominos on a chip: Carriers of genetic information packed together on a biochip like in nature August 11th, 2016

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

New remote-controlled microrobots for medical operations July 23rd, 2016

Announcements

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Human Interest/Art

Weizmann Institute of Science Presents: Weizmann Wonder Wander - 4G - is Online June 21st, 2016

Call for NanoArt and Art-Science-Technology Papers June 9th, 2016

Scientists propose non-animal tools for assessing the toxicity of nanomaterials: Particle and Fibre Toxicology publishes recommendations from expert group meeting April 26th, 2016

Are humans the new supercomputer?Today, people of all backgrounds can contribute to solving serious scientific problems by playing computer games. A Danish research group has extended the limits of quantum physics calculations and simultaneously blurred the boundaries between mac April 14th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic