Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Theoretical Modeling Brings New Understanding of Self-Assembly of 'Cell Skeletons'

Abstract:
Researchers at the National Institute for Nanotechnology (NINT) are learning which molecular scale factors affect the assembly and disassembly of microtubules that are part of a cell's skeleton. Microtubules control the division of all cells with a nucleus by constantly assembling at one end while they disassemble at the other. Failure in either of these processes can lead to abnormal cell division causing improper development of an organism, incomplete differentiation of a tissue, or uncontrolled cell division, as in cancer.

Theoretical Modeling Brings New Understanding of Self-Assembly of 'Cell Skeletons'

Edmonton, Alberta | Posted on January 19th, 2007

The research of Andriy Kovalenko, Leader of NINT's Theory and Modeling Group, uses modern theoretical and modeling approaches to get new insight into which forces between the molecular constituents are critical for that correct assembly of the molecules of tubulin in the microtubles. This work applies a new molecular theory of solvation, developed by Andriy Kovalenko and collaborators, to predict which forces drive the self-assembly of proteins into macromolecular structures, such as the microtubules. This prediction has not been possible with conventional simulation approaches because of the size and complexity of the system involved.

In their most recent paper, published as the cover story in the January 15, 2007 edition of the Biophysical Journal, Kovalenko and his colleagues at NINT and the Unversity of Alberta have identified that the interaction between the long filaments that form the microtubular structure is most strongly affected by the conformation of the M-loop, a small segment of the protein chain located on one side of the tubulin monomer. They also determined the relative balance in these interactions between the energy of attraction or repulsion and the disorder (entropy) imposed by the interaction with the solvent. This is possible because the theory explicitly accounts for both the proteins and the solvents and counter ions in the system.

Identification of the M-loop as the principal component of tubulin responsible for affecting the assembly of the filaments, as compared to the sequence of tubulin, is an important new insight that could lead to new approaches for rational drug design and to focus experimental and theoretical efforts in the study of microtubules and their function.

####

About National Institute for Nanotechnology
The National Institute for Nanotechnology is an integrated, multi-disciplinary institution involving researchers in physics, chemistry, engineering, biology, informatics, pharmacy and medicine. Established in 2001, it is operated as a partnership between the National Research Council and the University of Alberta, and is jointly funded by the Government of Canada, the Government of Alberta and the university.

Our researchers are focused on the revolutionary work being done at the nano-scale, the world of individual atoms or molecules. The main focus of our research is the integration of nano-scale devices and materials into complex nanosystems that are connected to the outside world. The long-term objective is to discover “design rules” for nanotechnology, and develop platforms for building nanosystems and materials that can be constructed and programmed for a particular application.

Located on the University of Alberta campus in Edmonton, Alberta, NINT's upcoming 15,000 square-metre building will be one of the world’s most technologically advanced research facilities and will house laboratory space that will be the quietest in Canada.

For more information, please click here

Contacts:
Shannon Jones
National Institute for Nanotechnology
780-641-1626

Copyright © 2007 Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Self Assembly

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Nanotubes that build themselves April 14th, 2017

Nanocages for gold particles: what is happening inside? March 16th, 2017

Most Complex Nanoparticle Crystal Ever Made by Design: Possible applications include controlling light, capturing pollutants, delivering therapeutics March 2nd, 2017

Discoveries

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Announcements

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Leti to Demo 1st Wireless UNB Transceiver for ‘Massive Internet of Things’ at RFIC 2017 and IMS 2017: Leti Will also Present Three Papers & Two Workshops on 5G Communications IC Design, from RF to mm-Wave, During IMS 2017 and RFIC 2017 in Hawaii May 24th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project