Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Story Tips from the Department of Energy's Oak Ridge National Laboratory, January 2007

Abstract:
ORNL researchers performing basic research have discovered a carbon nanotube-based system that functions like an atom-scale switch. Their approach is to perform first-principles calculations on positioning a molecule inside a carbon nanotube to affect the electronic current flowing across it. The result is an electrical gate at the molecular level: In one position, the molecular gate is open, allowing current through; in another position, the gate is closed, blocking the current. In a silicon chip, the gate is a silicon oxide barrier within the structure of the chip. In the ORNL model, the gate is a short molecule --encapsulated inside the carbon nanotube-- that is about one nanometer in size, or three orders of magnitude smaller than a silicon chip. The paper is slated to appear in the Feb 2 Physical Review Letters.

Story Tips from the Department of Energy's Oak Ridge National Laboratory, January 2007

Oak Ridge, TN | Posted on January 18th, 2007

####

About Oak Ridge National Laboratory
ORNL is in the final stages of a $350 million project to provide a modern campus for the next generation of great science. A unique combination of federal, state, and private funds is supporting the construction of 13 new facilities. Included in these new facilities will be the Laboratory for Comparative and Functional Genomics, the Center for Nanophase Materials Sciences, the Advanced Microscopy Laboratory, the Office of Science’s National Leadership Computing Facility for unclassified high-performance computing, and the joint institutes for computational sciences, biological sciences, and neutron sciences.

For more information, please click here

Contacts:
Bill Cabage
(865) 574-4399

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

Could black phosphorus be the next silicon? New material could make it possible to pack more transistors on a chip, research suggests July 7th, 2015

A cool way to form 2-D conducting polymers using ice: POSTECH scientists develop breakthrough technique to easily optimize electrical properties of Polyaniline nanosheets to an unprecedented level in an environmental-friendly and inexpensive way July 7th, 2015

Fundamental observation of spin-controlled electrical conduction in metals: Ultrafast terahertz spectroscopy yields direct insight into the building block of modern magnetic memories July 6th, 2015

Transition from 3 to 2 dimensions increases conduction, MIPT scientists discover July 6th, 2015

Nanoelectronics

Transition from 3 to 2 dimensions increases conduction, MIPT scientists discover July 6th, 2015

New technology using silver may hold key to electronics advances July 2nd, 2015

Exagan Raises €5.7 Million to Produce High-efficiency GaN-on-Silicon Power-switching Devices on 200mm Wafers: Leti-and-Soitec Spinout Focused on Becoming Leading European Source Of GaN Devices for Solar, Automotive, Telecoms and Infrastructure June 25th, 2015

Nanowires could be the LEDs of the future June 25th, 2015

Discoveries

Superconductor could be realized in a broken Lorenz invariant theory July 7th, 2015

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Crystal structure and magnetism -- new insight into the fundamentals of solid state physics: HZB team decodes relationship between magnetic interactions and the distortions in crystal structure within a geometrically 'frustrated' spinel system July 7th, 2015

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

Announcements

Superconductor could be realized in a broken Lorenz invariant theory July 7th, 2015

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Crystal structure and magnetism -- new insight into the fundamentals of solid state physics: HZB team decodes relationship between magnetic interactions and the distortions in crystal structure within a geometrically 'frustrated' spinel system July 7th, 2015

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project