Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Research removes major obstacle from mass production of tiny circuits

Abstract:
We report an experimental and theoretical study of two most critical yet still to-be-answered issues in dispensing-based nanoimprint lithography (D-NIL): air bubble formation and absorption, and discuss their impact on NIL yield and throughput. Using real-time observation via video, we found two different mechanisms for air bubble formation (feature pinning and multi-droplet encircling), and studied the dynamic behavior of the air absorption and air bubble shrinking under different conditions. Furthermore, we developed theoretical models and simulation programs of the air absorption and bubble shrinking based on molecular diffusion theory and hydrodynamics. We compared these models with experiments, and found excellent agreement. Our study shows that the key factors that affect the air dissolution time (and hence the air bubble shrinking time) are air bubble initial size, imprinting pressure, air solubility, and resist residue layer thickness. One of our key conclusions from the study, which has significant practical importance, is that although the air in a bubble can be completely dissolved in a resist liquid as long as the bubble is smaller than a certain size, the air absorption time might be too long for the dispensing-NIL operating in atmosphere or poor vacuum to have a necessary throughput in mass manufacturing.

Research removes major obstacle from mass production of tiny circuits

Princeton, NJ | Posted on January 17th, 2007

As they eliminate tiny air bubbles that form when liquid droplets are molded into intricate circuits, a Princeton-led team is dissolving a sizable obstacle to the mass production of smaller, cheaper microchips.

Led by Stephen Chou, the Joseph C. Elgin Professor of Engineering at Princeton, the team worked to troubleshoot one form of nanoimprint lithography, a revolutionary method invented by Chou in the 1990s. Nanoimprint uses a nanometer-scale mold to pattern computer chips and other nanostructures, and is in marked contrast to conventional methods that use beams of light, electrons or ions to carve designs onto devices.

This technique allows for the creation of circuits and devices with features that are not much longer than a billionth of a meter, or nanometer -- more than 10 times smaller than is possible in today's mass-produced chips, yet more than 10 times cheaper. Because of its unique capabilities and reasonable cost, nanoimprinting is a key solution to the future manufacturing of computer chips and a broad range of nanodevices for use in optics, magnetic data storage and biotechnology, among other disciplines.

In dispensing-based nanoimprinting, liquid droplets on the surface of a silicon wafer are pressed into a pattern, which quickly hardens to form the desired circuitry. This technique is more attractive to manufacturers than some other forms of nanoimprinting because it does not need to be done in an expensive vacuum chamber. However, the widespread use of the technique has been hindered by the formation of gas bubbles that distort the intended pattern.

"This is an important step because to benefit from the technology of nanoimprinting you need to be able to use it in mass manufacturing at low cost," Chou said. The team's findings are reported today (Jan. 17, 2007) in the journal Nanotechnology.

In a series of experimental and theoretical studies, Chou and his colleagues studied the factors that cause air bubbles to form and explored ways to eliminate the sub-millimeter-sized scourges. By increasing the imprinting pressure or using liquids that have higher air solubility, they were able to dramatically increase the likelihood that the bubbles would dissolve in the liquid before it hardened.

####

About Princeton University
Princeton simultaneously strives to be one of the leading research universities and the most outstanding undergraduate college in the world. As a research university, it seeks to achieve the highest levels of distinction in the discovery and transmission of knowledge and understanding, and in the education of graduate students. At the same time, Princeton is distinctive among research universities in its commitment to undergraduate teaching.

The University provides its students with academic, extracurricular and other resources -- in a residential community committed to diversity in its student body, faculty and staff -- that help them achieve at the highest scholarly levels and prepare them for positions of leadership and lives of service in many fields of human endeavor.

Through the scholarship and teaching of its faculty, and the many contributions to society of its alumni, Princeton seeks to fulfill its informal motto: “Princeton in the Nation’s Service and in the Service of All Nations."

The work was supported in part by the Office of Naval Research and the Defense Advanced Research Projects Agency.

The research team also includes Princeton electrical engineers Xiaogan Liang and Zengli Fu as well as Hua Tan of the Monmouth Junction-based Nanonex Corporation, founded by Chou in 1999.

Liang, Tan, Fu and Chou. Air bubble formation and dissolution in dispensing nanoimprint lithography. Jan. 17, 2007. Nanotechnology. doi:10.1088/0957-4484/18/2/025303.

For more information, please click here

Contacts:
Contact: Hilary Parker

609-258-4597
Princeton University, Engineering School
http://engineering.princeton.edu/

Copyright © Princeton University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

Two-dimensional semiconductor comes clean April 27th, 2015

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

Drexel materials scientists putting a new spin on computing memory April 22nd, 2015

Printing Silicon on Paper, with Lasers April 21st, 2015

Nanoelectronics

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

New class of 3D-printed aerogels improve energy storage April 22nd, 2015

‘Oxford Instruments Young Nanoscientist India Award 2015’ to Prof. Arindam Ghosh April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Discoveries

More is less in novel electronic material: Adding electrons actually shrinks the system April 27th, 2015

Two-dimensional semiconductor comes clean April 27th, 2015

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Announcements

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

The 16th Trends in Nanotechnology International Conference (TNT 2015) unveils 25 Keynote Speakers: Call for abstracts open April 27th, 2015

Graphenea celebrates fifth anniversary April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project