Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > GEs Nanotechnology Lab Discovers Direct Pathway to Ordered Nanostructured Ceramics

Abstract:
GE Global Research, the centralized research organization of the General Electric Company (NYSE: GE), today announced a promising breakthrough in nanotechnology that provides a direct pathway to making nanoceramic materials from polymeric precursors. Developing processes and a greater understanding of nano-engineered ceramics could lead to future applications in aviation and energy, where products such as aircraft engines and gas turbines could one day achieve new levels of efficiency, reliability and environmental performance.

GEs Nanotechnology Lab Discovers Direct Pathway to Ordered Nanostructured Ceramics

NISKAYUNA, NY | Posted on January 17th, 2007

A cross-disciplinary team led by Dr. Patrick R. L. Malenfant and Dr. Julin Wan made the discovery, which is reported in the January issue of Nature Nanotechnology.

The team developed a very simple synthesis for the polymeric precursor, which enables a very efficient path towards ordered non-oxide ceramic nanostructures. The technology is based on a novel inorganic/organic block copolymer that forms ordered polymeric nanostructures via self-assembly. The resulting material is subsequently pyrolized to yield the desired ceramic, in which the original nanostructure is retained. The unique aspect of the invention is that the desired composition and the ability to form ordered nanostructures are built in. No external template is needed, and the process is simple and robust.

Dr. Malenfant said, "Drawing from recent developments in the literature, we were able to develop a robust synthesis of well-defined block copolymers that doesn't require stringent atmospheric conditions and that readily assemble into ordered nanostructures upon solvent evaporation. Pyrolysis provides ceramic materials that retain their nanostructure up to 1400 C."

Dr. Wan said, "Nanostructure engineering in high temperature ceramics is extremely challenging because of the limited number of options available at the high temperatures usually needed to make these materials. Our inorganic block copolymer precursor brings the molecular design of polymers into the realm of nanostructured ceramics. The well-developed science of block copolymer physics can then be utilized to predict and control the formation of a myriad of nanostructures in ceramics. This provides access to many structural motifs that have yet to be explored in these materials."

The development of nanoceramic materials is a key objective of GE's Nanotechnology Program at Global Research. Ceramics are extremely heat resistant but brittle materials. However, nature has demonstrated that through nanotechnology, ceramic materials can be made more durable. Non-oxide ceramics with increased toughness, combined with their intrinsic heat-resistant properties, could have broad applications for GE's Aviation and Energy businesses.

Dr. Malenfant and Dr. Wan point out that while damage tolerant high-temperature ceramics could revolutionize product development in aviation and energy, structural applications are still many years away. More immediate applications could result from the ability to prepare high surface area ceramics that could be exploited in catalysis.

Dr. Malenfant said, "Our method enables the synthesis of ordered, high surface area, mesoporous materials that could be explored as non-traditional catalyst supports. We expect the impact of this technology to spread far beyond the materials initially reported due to the powerful combination of synthetic polymer chemistry, polymer physics and ceramics processing."

####

About GE Global Research
GE Global Research was the first industrial research lab in the United States and is one of the world's most diversified research centers, providing innovative technology for all of GE's businesses. Global Research has been the cornerstone of GE technology for more than 100 years, developing breakthrough innovations in areas such as medical imaging, energy generation, jet engines, advanced materials and lighting. GE Global Research is headquartered in Niskayuna, New York and has facilities in Bangalore, India; Shanghai, China; and Munich, Germany. Visit GE Global Research at http://www.ge.com/research .

For more information, please click here

Contacts:
GE Contact
Media Relations
Todd Alhart, 518-387-7914

Copyright © Business Wire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Discoveries

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Materials/Metamaterials

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry September 14th, 2018

Peering into private life of atomic clusters -- using the world's tiniest test tubes September 6th, 2018

Cannibalistic materials feed on themselves to grow new nanostructures September 1st, 2018

Environmentally friendly photoluminescent nanoparticles for more vivid display colors: Osaka University-led researchers created a new type of light-emitting nanoparticle that is made of ternary non-toxic semiconductors to help create displays and LED lighting with better colors t August 29th, 2018

Announcements

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Energy

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

S, N co-doped carbon nanotube-encapsulated CoS2@Co: Efficient and stable catalysts for water splitting September 10th, 2018

September 5th, 2018

Rice U. lab probes molecular limit of plasmonics: Optical effect detailed in organic molecules with fewer than 50 atoms September 5th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project