Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Combination of Introgenís Nanoparticles Demonstrate Increased Efficacy in the Treatment of Metastatic Lung Cancer

Abstract:
Two powerful tumor suppressor genes, p53 and FUS1, administered intravenously in nanoparticle formulations were capable of significantly shrinking metastatic tumors in models of human lung cancer, according to investigators at The University of Texas M. D. Anderson Cancer Center. Molecular cancer therapies using these genes, p53 and FUS1, are in clinical-stage development by Introgen Therapeutics (NASDAQ:INGN). The technologies are included in a broad portfolio of intellectual properties licensed exclusively to Introgen from M. D. Anderson Cancer Center and other institutions.

Combination of Introgenís Nanoparticles Demonstrate Increased Efficacy in the Treatment of Metastatic Lung Cancer

AUSTIN, Texas | Posted on January 16th, 2007

The study, published in the January 15 issue of the journal Cancer Research, found that each of the nanoparticle tumor suppressors was effective therapy but more powerful results were observed when the treatments were combined. Systemic therapy with combined p53 and FUS1 nanoparticles in disseminated, metastatic lung cancers decreased the number of human lung tumors by 75 percent and cut their size by 80 percent. The studies also showed that the nanoparticle treatments had no demonstrable adverse effects on normal cells.

Abnormalities of the p53 and FUS1 tumor suppressors are among the most common molecular defects found in human cancers. The mechanism of the increased activity of the combined therapy was determined. The restoration of FUS1 function prevented the breakdown of the administered p53 resulting in its increased ability to destroy tumor cells.

This novel treatment strategy − the first time that two functional tumor suppressor genes have been used in a nanoparticle treatment − may offer a promising clinical treatment for lung and other cancers, according to lead author Lin Ji, Ph.D., assistant professor in the Department of Thoracic & Cardiovascular Surgery research at M. D. Anderson.

Robert E. Sobol, M.D., Introgen's senior vice president, Medical and Scientific Affairs stated, "These results further support our continued clinical development of p53 and FUS1 tumor suppressor therapies. These nanoparticle formulations facilitate treatment of disseminated cancers and validate the important concept of combining tumor suppressors selected to work synergistically in killing cancer cells while leaving normal cells unharmed."

In this study, the researchers tested the combined FUS1/p53 nanoparticles against four different human lung cancers as well as in normal non-cancerous cells. The treatment dramatically inhibited tumor cell growth in all four lung cancers tested, they said. It also induced cell death in the tumors, likely through the activation of p53 and FUS1 mediated gene functions that resulted in the killing of cancer cells but not normal cells.

####

About Introgen Therapeutics, Inc.
Introgen Therapeutics, Inc. is a biopharmaceutical company focused on the discovery, development and commercialization of targeted molecular therapies for the treatment of cancer and other diseases. Introgen is developing molecular therapeutics, immunotherapies, vaccines and nano-particle therapies to treat a wide range of cancers using tumor suppressors and cytokines. Introgen maintains integrated research, development, manufacturing, clinical and regulatory departments and operates multiple manufacturing facilities including a commercial scale cGMP manufacturing facility.

Statements in this release that are not strictly historical may be ďforward-lookingĒ statements, including those relating to Introgenís future success with its clinical development program with p53 and FUS1 for treatment of cancer or other diseases. The actual results may differ from those described in this release due to risks and uncertainties that exist in Introgenís operations and business environment, including Introgenís stage of product development and the limited experience in the development of gene-based drugs in general, dependence upon proprietary technology and the current competitive environment, history of operating losses and accumulated deficits, reliance on collaborative relationships, and uncertainties related to clinical trials, the safety and efficacy of Introgenís product candidates, the ability to obtain the appropriate regulatory approvals, Introgenís patent protection and market acceptance, as well as other risks detailed from time to time in Introgenís filings with the Securities and Exchange Commission including its filings on Form 10-K and Form 10-Q. Introgen undertakes no obligation to publicly release the results of any revisions to any forward-looking statements that reflect events or circumstances arising after the date hereof.

Editorís Note: M. D. Anderson Cancer Center also issued a news release about this publication. It may be found at http://www.mdanderson.org .

Editor's Note: For more information on Introgen Therapeutics, or for a menu of archived press releases, please visit Introgenís Website at: http://www.introgen.com .

For more information, please click here

Contacts:
Introgen Therapeutics, Inc.
C. Channing Burke, 512-708-9310 Ext. 322

Copyright © Business Wire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

Nanoscale assembly line August 29th, 2014

Copper shines as flexible conductor August 29th, 2014

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

PetLife Comments on CNN Story on Scorpion Venom Health Benefits August 27th, 2014

Discoveries

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

Copper shines as flexible conductor August 29th, 2014

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

Announcements

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Childrenís Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Human Interest/Art

Japanese gold leaf artists worked on a nano-scale: Study demonstrates X-ray fluorescence spectroscopy is a non-destructive way to date artwork July 3rd, 2014

Harry Potter-style invisibility cloaks: A real possibility next Christmas? Forget socks and shaving foam, the big kids of tomorrow want an invisible cloak for Christmas December 19th, 2013

Chicago Awareness Organization First Not-for-Profit to Sponsor Dog Training to Detect Ovarian Cancer Odorants December 12th, 2013

ZEISS Microscopes used to create images for Art Exhibit at Midway Airport: Art of Science: Images from the Institute for Genomic Biology October 25th, 2013

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE