Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > California Nanosystems Institute at UCLA selects three FEI systems

Abstract:
FEI Company is proud to announce that California's largest university, the University of California at Los Angeles, has chosen FEI to supply three advanced transmission electron microscopes for the California NanoSystems Institute (CNSI). The systems include two 300-kV Titan™ S/TEMs - the world's most powerful commercially-available microscope - and a 200-kV Tecnai™ TF20 for high-throughput electron tomographic studies.

The systems will serve the CNSI mission - to encourage university collaboration with industry and to enable the rapid commercialization of discoveries in nanosystems.

California Nanosystems Institute at UCLA selects three FEI systems

Hillsboro, OR | Posted on January 9th, 2007

The California NanoSystems Institute (CNSI) at UCLA has selected FEI for three advanced transmission electron microscopes for the institute's Electron Imaging Center for NanoMachines (EICN) core laboratory. The systems include a 300-kV Titan™ S/TEM--the world's most powerful commercially-available microscope--a second 300-kV Titan optimized for high-resolution structural biology applications, and a 200-kV Tecnai™ TF20 for high-throughput electron tomographic studies.

"Seeing molecules, materials and molecular machines in three dimensions is critical to nanoscience," outlined Hong Zhou, faculty director of the Electron Imaging Center for NanoMachines (EICN). "With these microscopes we will be able to image, characterize and analyze structures down to the atomic scale delivering valuable three-dimensional structural information for cell biological, molecular and materials sciences. These systems are essential to our goal of designing a state-of-the-art microscopy facility that will serve the demanding charter of the CNSI."

The CNSI mission is to encourage university collaboration with industry and to enable the rapid commercialization of discoveries in nanosystems. The work conducted at the CNSI represents world-class expertise in five targeted areas of nanosystems-related research including Energy, Environment and NanoToxicology, NanoBiotechnology and Biomaterials, NanoMechanical and NanoFluidic systems and NanoElectronics, Photonics and Architectonics.

"The CNSI leadership fully recognizes the central importance of electron imaging to sustained research excellence across these five areas of cross disciplinary nano-scale research," said Dr. Leonard Rome, senior associate dean for research in the David Geffen School of Medicine at UCLA and associate director of the CNSI. The new TEM instruments will be installed in the EICN core facility in the newly-constructed CNSI building at UCLA. The EICN laboratory is one of eight core facilities at the CNSI which will serve both academic and industry collaborations.

CNSI officials outlined that electron imaging represents very powerful and indispensable modern tools for biologists, nano materials scientists and engineers. Cryo-electron cryomicroscopy (cryoEM) plays an increasingly important role in determining subnanometer-resolution structures of macromolecular complexes or biological nano-machines (>150 kDa and 10 nm in dimension). At this resolution, secondary structural elements such as a-helices and b-sheets are readily recognizable and used to build atomic models through integrated modeling approaches. The emerging method of electron tomography allows the determination of three-dimensional architectures of thin objects ranging in size from a nanometer to micrometers (the size of small cells). These structural methods provide exciting opportunities to determine the structures of sub-cellular assemblies that are either too large or too flexible/heterogeneous to be investigated by conventional crystallographic or NMR methods.

For materials scientists, high-resolution electron tomography, together with other imaging modalities, such as STEM and electron spectroscopy, will allow the 3D visualization of internal structures and compositions of novel materials and nano devices at an atomic level, thus permitting a better understanding of the mechanisms of their action and suggest ways for improved designs. The three new instruments will provide the much-needed resource for over a dozen major users and tens of secondary and potential users with federal funded research projects. These research groups span multiple departments/institutes among the colleges of physical and life sciences and engineering, as well as the medical school.

"Similar to the Albany Nanotech and other initiatives in Europe and Asia, the California NanoSystems Institute at UCLA is in the vanguard of nanoscale research, development and commercialization of new, nano-enabled technologies that promise to make a global impact," commented Rob Fastenau, executive vice president. "We are excited about the broad scope of the institute and very pleased that the resolution, reliability and flexibility of FEI's enabling tools will serve the multidisciplinary applications and important work of the CNSI."

The first two systems included in this significant order, booked in the second half of 2006, are expected to ship in the first half of this year and the third system is expected to ship in the fourth quarter of 2007.

####

About FEI
FEI (Nasdaq: FEIC) is a global leader in providing innovative instruments for nanoscale imaging, analysis and prototyping. FEI focuses on delivering solutions that provide groundbreaking results and accelerate research, development and manufacturing cycles for its customers in Semiconductor and Data Storage, Academic and Industrial R&D, and Life Sciences markets. With R&D centers in North America, Europe, and India, and sales and service operations in more than 50 countries around the world, FEI’s Tools for Nanotech™ are bringing the nanoscale within the grasp of leading researchers and manufacturers. More information can be found online at: http://www.fei.com .

This news release contains forward-looking statements that include statements about the expected capabilities of certain products as well as order and shipment dates. Factors that could affect these forward-looking statements include but are not limited to the inability of FEI, its suppliers or project partners to achieve the capabilities anticipated; failure of any of the tools to perform as anticipated at the customer site, possible cancellation of the purchase order and possible failure to manufacture and deliver the tools for shipment as expected. Please also refer to our Form 10-K, Forms 10-Q, Forms 8-K and other filings with the U.S. Securities and Exchange Commission for additional information on these factors and other factors that could cause actual results to differ materially from the forward-looking statements. FEI assumes no duty to update forward-looking statements.

About UCLA California’s largest university, UCLA enrolls approximately 38,000 students per year and offers degrees from the UCLA College of Letters and Science and 11 professional schools in dozens of varied disciplines. UCLA consistently ranks among the top five universities and colleges nationally in total research-and-development spending, receiving more than $820 million a year in competitively awarded federal and state grants and contracts. UCLA employs more than 27,000 faculty and staff, has more than 350,000 living alumni and has been home to five Nobel Prize recipients. For additional information on CNSI please visit http://www.cnsi.ucla.edu .

For more information, please click here

Contacts:
Dan Zenka, APR
Global Public Relations
FEI Company
+1 503 726 2695

Copyright © FEI

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project