Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Hybrid Structures Combine Strengths of Carbon Nanotubes and Nanowires

Abstract:
A team of researchers at Rensselaer Polytechnic Institute has created hybrid structures that combine the best properties of carbon nanotubes and metal nanowires. The new structures, which are described in a recent issue of Applied Physics Letters, could help overcome some of the key hurdles to using carbon nanotubes in computer chips, displays, sensors, and many other electronic devices.

Hybrid Structures Combine Strengths of Carbon Nanotubes and Nanowires

Troy, N.Y. | Posted on January 8th, 2007

The impressive conductivity of carbon nanotubes makes them promising materials for a wide variety of electronic applications, but techniques to attach individual nanotubes to metal contacts have proven challenging. The new approach allows the precise attachment of carbon nanotubes to individual metal pins, offering a practical solution to the problem of using carbon nanotubes as interconnects and devices in computer chips.

"This technique allows us to bridge different pieces of the nanoelectronics puzzle, taking us a step closer to the realization of nanotube-based electronics," said Fung Suong Ou, the paper's corresponding author and a graduate student in materials science and electrical engineering at Rensselaer.

[NOTE: An online version of this press release with electron microscope images of the hybrid structures is available at http://news.rpi.edu/update.do?artcenterkey=1879 .]

As chip designers seek to continually increase computing power, they are looking to shrink the dimensions of chip components to the nanometer scale, or about 1-100 billionths of a meter. Carbon nanotubes and nanowires that became available in the 1990s are promising candidates to act as connections at this scale, according to Ou, because they both possess interesting properties.

For example, carbon nanotubes display amazing mechanical strength, and they are excellent conductors of electricity, with the capacity to produce interconnects that are many times faster than current interconnects based on copper. Gold nanowires also have very interesting optical and electrical properties, and they are compatible with biological applications, Ou said.

"In order to take full advantage of these materials, we demonstrate the idea of combining them to make the next generation of hybrid nanomaterials," he said. "This approach is a good method to marry the strengths of the two materials."

The metal nanowires in this technique are made using an alumina template that can be designed to have pore sizes in the nanometer range. Copper or gold wires are deposited inside the pores, and then the entire assembly is placed in a furnace, where a carbon-rich compound is present. When the furnace is heated to high temperatures, the carbon atoms arrange themselves along the channel wall of the template and the carbon nanotubes grow directly on top of the copper wires.

"It's a really easy technique, and it could be applied to a lot of other materials," Ou said. "The most exciting aspect is that it allows you to manipulate and control the junctions between nanotubes and nanowires over several hundred microns of length. The alumina templates are already mass-produced for use in the filter industry, and the technique can be easily scaled up for industrial use."

To date the team has made hybrid nanowires that combine carbon nanotubes with both copper and gold. But they also are currently working to connect carbon nanotubes to a semiconductor material, which could be used as a diode, according to Ou.

The research was performed under the guidance of Pulickel Ajayan, the Henry Burlage Professor of Materials Science and Engineering at Rensselaer and a world-renowned expert in fabricating nanotube-based materials. Other Rensselaer researchers involved with the project were Robert Vajtai, Derek Benicewicz, Lijie Ci, and M.M. Shaijumon.

The research was funded by grants from the National Science Foundation and the Focus Center New York for Electronic Interconnects.

####

About Rensselaer Polytechnic Institute
Throughout its history, Rensselaer research has produced ground-breaking work in a broad range of important areas.

Early RPI engineering graduates built bridges that linked people, commerce, and communities. Today, Rensselaer people are building the bridges that will link the world to the promises of new technologies.

The collaborative efforts of our students, faculty, corporate partners, and government agencies are generating a new momentum in research and the development of innovative technologies, including biotechnology, information technology, and nanotechnology.

Creating and applying knowledge, and interdisciplinary inquiry, with a rigorous approach to solving problems, Rensselaer men and Rensselaer women are fulfilling the university’s role as a place where people find innovative solutions to complex technical challenges.

For more information, please click here

Contacts:
Jason B. Gorss
Manager of Media Relations
Rensselaer Polytechnic Institute
518.276.6098 (office)
518.495.5486 (cell)

Copyright © Rensselaer Polytechnic Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

Nanoelectronics

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

Discoveries

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Meteorite impact on a nano scale August 29th, 2016

Announcements

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Meteorite impact on a nano scale August 29th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic