Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > News > Designing new materials with nanostructures as building blocks

January 3rd, 2007

Designing new materials with nanostructures as building blocks

Abstract:
Novel and robust networks, tailored from nanostructures as building blocks, are the foundations for constructing nano- and microdevices. However, assembling nanostructures into ordered micronetworks remains a significant challenge in nanotechnology. The most suitable building blocks for assembling such networks are nanoparticle clusters, nanotubes and nanowires. Unfortunately, little is known regarding the different ways networks can be created and their physicochemical properties as a function of their architecture. It is expected that, when 1D nanostructures are connected covalently, the resulting assemblies possess mechanical, electronic, and porosity properties that are strikingly different from those of the isolated 1D blocks. In extensive theoretical studies, researchers now have shown that the properties of 2D and 3D networks built from 1D units are dictated by the specific architecture of these arrays. Specifically, they demonstrate that one could join nanotubes and make supernetworks that exhibit different properties when compared to the individual building blocks (i.e. the nanotubes). Besides the unique and unusual mechanical and electronic properties, the porosity of these systems makes them good candidates for exploring novel catalysts, sensors, filters, or molecular storage properties. The crystalline 2D and 3D networks are also expected to present unusual optical properties, in particular when the pore periodicity approaches the wavelength of different light sources, such as optical photonic crystals.

Source:
nanowerk.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Molecular Nanotechnology

New remote-controlled microrobots for medical operations July 23rd, 2016

Scientists develop way to upsize nanostructures into light, flexible 3-D printed materials: Virginia Tech, Livermore National Lab researchers develop hierarchical 3-D printed metallic materials July 20th, 2016

Pushing a single-molecule switch: An international team of researchers from Donostia International Physics Center, Fritz-Haber Institute of the Max Planck Society, University of Liverpool, and the Polish Academy of Sciences has shown a new way to operate a single-molecule switch July 19th, 2016

Researchers harness DNA as the engine of super-efficient nanomachine: New platform detects traces of everything from bacteria to viruses, cocaine and metals July 10th, 2016

Nanoelectronics

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Making magnets flip like cats at room temperature: Heusler alloy NiMnSb could prove valuable as a new material for digital information processing and storage July 25th, 2016

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

Discoveries

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

Materials/Metamaterials

Designing climate-friendly concrete, from the nanoscale up: New understanding of concrete’s properties could increase lifetime of the building material, decrease emissions July 25th, 2016

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic