Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > MIT implant could measure tumor growth, treatment

Abstract:
A tiny implant now being developed at MIT could one day help doctors rapidly monitor the growth of tumors and the progress of chemotherapy in cancer patients.

MIT implant could measure tumor growth, treatment

Cambridge, MA | Posted on December 18th, 2006

The implant contains nanoparticles that can be designed to test for different substances, including metabolites such as glucose and oxygen that are associated with tumor growth. It can also track the effects of cancer drugs: Once inside a patient, the implant could reveal how much of a certain cancer drug has reached the tumor, helping doctors determine whether a treatment is working in a particular patient.

"You really want to have some sort of rapid measure of whether it's working or not, or whether you should go on to the next (drug)," said Michael Cima, the Sumitomo Electric Industries Professor of Engineering in the Department of Materials Science and Engineering, and the leader of the research team.

Such nanoparticles have been used before, but for the first time, the MIT researchers have encased the nanoparticles in a silicone delivery device, allowing them to remain in patients' bodies for an extended period of time. The device can be implanted directly into a tumor, allowing researchers to get a more direct look at what is happening in the tumor over time.

With blood testing, which is now commonly used to track chemotherapy progress, it's hard to tell if cancer drugs are reaching their intended targets, says Grace Kim, a graduate student in the Harvard-MIT Division of Health Sciences and Technology and one of the researchers working on the implant. That's because the system of blood vessels surrounding tumors is complicated, and you can't trust that drugs present in the blood have also reached the tumor, according to Kim.

The new technique, known as implanted magnetic sensing, makes use of detection nanoparticles composed of iron oxide and coated with a sugar called dextran. Antibodies specific to the target molecules are attached to the surface of the particles. When the target molecules are present, they bind to the particles and cause them to clump together. That clumping can be detected by MRI (magnetic resonance imaging).

The nanoparticles are trapped inside the silicone device, which is sealed off by a porous membrane. The membrane allows molecules smaller than 30 nm to get in, but the detection particles are too big to get out.

The device can be engineered to test for many things at the same time, leading Kim to offer a turkey-based analogy.

"When you're cooking a turkey, you can take the temperature with a thermometer," she said. "But with something like this, instead of just taking the temperature, you can find out about the moisture, the saltiness, and whether there's enough rosemary."

In addition to monitoring the presence of chemotherapy drugs, the device could also be used to check whether a tumor is growing or shrinking, or whether it has spread to other locations, by sensing the amount and location of tumor markers.

The next step for the research group is to start more extensive preclinical testing. They will be looking for a hormone, human chorionic gonadotropin (HCG), that can be considered a marker for cancer because it is produced by tumors but not normally found in healthy individuals (unless they are pregnant).

The researchers are now preparing a paper on the work and have presented their findings at recent meetings of the European Cancer Society and the American Institute of Chemical Engineers.

Other MIT researchers involved in the project are Karen Daniel, a graduate student in chemical engineering, Christophoros Vassiliou, a graduate student in electrical engineering and computer science, and Noel Elman, a postdoctoral associate in the Materials Processing Center. Lee Josephson, an associate professor at the Center for Molecular Imaging Research at Massachusetts General Hospital, is also contributing to the project.

This work is funded by the National Cancer Institute through the MIT-Harvard Center of Cancer Nanotechnology Excellence.

####

About MIT
The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the 21st century.

For more information, please click here

Contacts:
Elizabeth A. Thomson, MIT News Office
Phone: 617-258-5402
Email:

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Products

Biosenta Inc. Updates New Household Disinfectant Testing Results; It Kills 100% of a Broad Range of Deadly Molds, Fungi, Bacteria, and Viruses, Including Ebola and Enterovirus D68 November 20th, 2014

NEI Development Update on NANOMYTE® TC-5001, a Protective Coating for Zinc-Plated and Galvanized Steel November 8th, 2014

HZO Teams With Deutsche Telekom to Unveil the Waterproof Tolino Vision 2 eReader: The New HZO Protected eReader Ushers in a New Era of Waterproof Electronics, Providing a Seamless User Experience Without the Risk of Using Port Doors and Mechanical Seals October 10th, 2014

7th Nanotechnology Festival, Exhibition Kicks Off Work in Iran October 7th, 2014

Nanomedicine

Research reveals how our bodies keep unwelcome visitors out of cell nuclei November 24th, 2014

ASU, IBM move ultrafast, low-cost DNA sequencing technology a step closer to reality November 24th, 2014

An Inside Job: UC-Designed Nanoparticles Infiltrate, Kill Cancer Cells From Within November 24th, 2014

Iran Exports Nanodrugs to Syria November 24th, 2014

Sensors

Cooling with the coldest matter in the world November 24th, 2014

Canatu Launches CNB In-Mold Film for Transparent Touch on 3D Surfaces –in Cars, Household Appliances, Wearables, Portables November 20th, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Spiraling light, nanoparticles and insights into life’s structure November 19th, 2014

Announcements

Research reveals how our bodies keep unwelcome visitors out of cell nuclei November 24th, 2014

ASU, IBM move ultrafast, low-cost DNA sequencing technology a step closer to reality November 24th, 2014

An Inside Job: UC-Designed Nanoparticles Infiltrate, Kill Cancer Cells From Within November 24th, 2014

Cooling with the coldest matter in the world November 24th, 2014

Human Interest/Art

Longhorn beetle inspires ink to fight counterfeiting November 5th, 2014

Iran-Made Respiratory Nano Masks Provided to Hajj Pilgrims October 23rd, 2014

Japanese gold leaf artists worked on a nano-scale: Study demonstrates X-ray fluorescence spectroscopy is a non-destructive way to date artwork July 3rd, 2014

Harry Potter-style invisibility cloaks: A real possibility next Christmas? Forget socks and shaving foam, the big kids of tomorrow want an invisible cloak for Christmas December 19th, 2013

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE