Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Platinum Cages

Abstract:
Liposomes as blueprints for hollow platinum nanospheres

Platinum Cages

Posted on November 2, 2006

It looks like lather under an electron microscope: American researchers have successfully produced porous, nanoscopic, hollow platinum spheres by using liposomes as blueprints.

Tiny structures made of precious metals are of interest because of their broad spectrum of biomedical, catalytic, and optical applications. Porous nanospheres, for example, are ideal for catalytic applications that require large surfaces but can work at low concentration (and consequently with little material). Previous production methods had a disadvantage in that the spheres consisted of individual metallic nanoparticles; these were not very stable and only relatively small spheres were accessible. A team at the Sandia National Laboratories and the University of New Mexico in Albuquerque as well as the University of Georgia in Athens has now developed a clever new technique for the production of relatively large porous platinum nanocages. These spheres do not consist of individual particles, but of continuous, branched (dendritic) platinum sheets.

Liposomes are familiar to us from creams: the tiny balls of fat carry active ingredients through the skin. In the liposome that researchers working with John A. Shelnutt used as a blueprint, the mantle of fat consists of a double lipid layer. The narrow space between the two layers contains a light-activated catalyst, a tin-containing porphyrin compound. (Porphyrin frameworks are also an important component of hemoglobin.) The liposomes are placed in a solution containing a platinum salt. When these liposomes are then irradiated with light, the photocatalyst transfers electrons to the platinum ions. The resulting uncharged platinum atoms gather into tiny clumps. Once these clumps reach a certain size, they also become active and catalyze the release of more platinum atoms from the platinum salt. Atom by atom, small, flat, branched platinum structures (dendrites) form within the double lipid layer. These continue to grow until all of the platinum salt is consumed. The important thing is to make sure that the number of tin photocatalyst molecules—and thus the initial number of platinum clumps—within the liposome double layer is very high. The resulting dendrites are then close enough to each other to grow into a network; this forms a solid but porous sphere with the same size and shape as the liposome. When the liposomes are broken up, the platinum spheres remain intact. Shelnutt, his collaborator Yujiang Song, and their team were able to produce spheres with diameters up to 200 nm. These platinum spheres aggregate into foam-like structures.

####


Author: John A. Shelnutt, University of Georgia, Athens (USA), jasheln.unm.edu/

Title: Synthesis of Platinum Nanocages by Using Liposomes Containing Photocatalyst Molecules

Angewandte Chemie International Edition, doi: 10.1002/anie.200602403

Contact:
Editorial office:
angewandte@wiley-vch.de

or David Greenberg (US)
dgreenbe@wiley.com

or Julia Lampam (UK)
jlampam@wiley.co.uk

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

GLOBALFOUNDRIES Demonstrates Industry-Leading 112G Technology for Next-Generation Connectivity Solutions: High bandwidth, low power SerDes IP portfolio enables ‘connected intelligence’ in data centers and networking applications November 15th, 2017

Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures: Forgeries and product piracy are detrimental to society and industry -- 3-D microstructures can increase security -- KIT researchers develop innovative fluorescent 3-D stru November 15th, 2017

Materials/Metamaterials

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

A new way to mix oil and water: Condensation-based method developed at MIT could create stable nanoscale emulsions November 8th, 2017

TUBALL nanotube-based concentrates recognised as the most innovative raw material for composites by JEC Group November 7th, 2017

Announcements

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project