Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Platinum Cages

Abstract:
Liposomes as blueprints for hollow platinum nanospheres

Platinum Cages

Posted on November 2, 2006

It looks like lather under an electron microscope: American researchers have successfully produced porous, nanoscopic, hollow platinum spheres by using liposomes as blueprints.

Tiny structures made of precious metals are of interest because of their broad spectrum of biomedical, catalytic, and optical applications. Porous nanospheres, for example, are ideal for catalytic applications that require large surfaces but can work at low concentration (and consequently with little material). Previous production methods had a disadvantage in that the spheres consisted of individual metallic nanoparticles; these were not very stable and only relatively small spheres were accessible. A team at the Sandia National Laboratories and the University of New Mexico in Albuquerque as well as the University of Georgia in Athens has now developed a clever new technique for the production of relatively large porous platinum nanocages. These spheres do not consist of individual particles, but of continuous, branched (dendritic) platinum sheets.

Liposomes are familiar to us from creams: the tiny balls of fat carry active ingredients through the skin. In the liposome that researchers working with John A. Shelnutt used as a blueprint, the mantle of fat consists of a double lipid layer. The narrow space between the two layers contains a light-activated catalyst, a tin-containing porphyrin compound. (Porphyrin frameworks are also an important component of hemoglobin.) The liposomes are placed in a solution containing a platinum salt. When these liposomes are then irradiated with light, the photocatalyst transfers electrons to the platinum ions. The resulting uncharged platinum atoms gather into tiny clumps. Once these clumps reach a certain size, they also become active and catalyze the release of more platinum atoms from the platinum salt. Atom by atom, small, flat, branched platinum structures (dendrites) form within the double lipid layer. These continue to grow until all of the platinum salt is consumed. The important thing is to make sure that the number of tin photocatalyst molecules—and thus the initial number of platinum clumps—within the liposome double layer is very high. The resulting dendrites are then close enough to each other to grow into a network; this forms a solid but porous sphere with the same size and shape as the liposome. When the liposomes are broken up, the platinum spheres remain intact. Shelnutt, his collaborator Yujiang Song, and their team were able to produce spheres with diameters up to 200 nm. These platinum spheres aggregate into foam-like structures.

####


Author: John A. Shelnutt, University of Georgia, Athens (USA), jasheln.unm.edu/

Title: Synthesis of Platinum Nanocages by Using Liposomes Containing Photocatalyst Molecules

Angewandte Chemie International Edition, doi: 10.1002/anie.200602403

Contact:
Editorial office:
angewandte@wiley-vch.de

or David Greenberg (US)
dgreenbe@wiley.com

or Julia Lampam (UK)
jlampam@wiley.co.uk

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

No need in supercomputers: Russian scientists suggest a PC to solve complex problems tens of times faster than with massive supercomputers June 30th, 2016

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

Materials/Metamaterials

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Coexistence of superconductivity and charge density waves observed June 23rd, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Announcements

No need in supercomputers: Russian scientists suggest a PC to solve complex problems tens of times faster than with massive supercomputers June 30th, 2016

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic