Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Unusual Rods

Abstract:
Get thicker when stretched, thinner when compressed: simulations identify auxetic molecules

Unusual Rods

Posted on August 24, 2006

Day-to-day experience teaches us that stretching an object makes it thinner; pushing it together makes it thicker. However, there are also materials that behave contrary to our expectations: they get thicker when stretched and thinner when compressed. Known as “auxetic” substances, these materials include some foams and special crystals. Researchers at the Bar-Ilan University and the Israel Institute of Technology have now used quantum mechanical calculations to identify the first class of chemical compounds that behave auxetically on a molecular level.

When a usual material is, for example, hit by a ball, the material “flows” outward from the impact zone making the point of impact weaker. However, in auxetic materials, the matter “flows” inward, thus strengthening this zone. Such materials would be advantageous for bulletproof vests. Auxetic materials also provide interesting possibilities for medical technology. The introduction of implants such as stents to hold open blood vessels would be easier if, under pressure, the device would get thinner instead of thicker in the perpendicular direction.

In the auxetic materials known to date, the unusual behavior is a macroscopic property that stems from a special arrangement of the particles within the material, such as a particular weblike structure. Nanoscale auxetic materials are so far unknown.

By using quantum mechanical calculations, a team led by Shmaryahu Hoz has now predicted that there also exist certain molecules that behave auxetically: a class of compounds known as polyprismanes. These are rod-shaped molecules built up of several three-, four-, five-, or six-membered rings of carbon atoms stacked on top of each other. The prismanes made of three- and four-membered carbon rings show roughly equal auxetic effects, regardless of the number of stacked rings. The ones made of five- and six-membered carbon rings demonstrate significantly higher auxetic effects. Of all of the variations for which calculations were carried out, the prismane made of four six-membered rings showed the strongest effect. The researchers have not yet been able to unambiguously explain why prismane molecules behave auxetically.

“Although prismanes were discovered over 30 years ago, very few representatives of this class of compounds have been synthesized so far,” says Hoz. “We hope that our insights will act as an incentive to produce and characterize more prismanes.”

####


Author: Shmaryahu Hoz, Bar-Ilan University, Ramat-Gan (Israel), www.biu.ac.il/CH/faculty/hoz/hozint.html

Title: Auxetics at the Molecular Level: A Negative Poisson's Ratio in Molecular Rods

Angewandte Chemie International Edition, 2006, 45, No. 36, doi: 10.1002/anie.200601764

Contact:
Editorial office:
angewandte@wiley-vch.de

or David Greenberg (US)
dgreenbe@wiley.com

or Julia Lampam (UK)
jlampam@wiley.co.uk

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Materials/Metamaterials

Fonon Announces 3D Metal Sintering Technology: Emerging Additive Nano Powder Manufacturing Technology August 28th, 2014

SouthWest NanoTechnologies CEO Dave Arthur to Discuss “Carbon Nanotubes and Automotive Applications” at The Automotive Composites Conference and Expo 2014 (ACCE2014) August 28th, 2014

Nanodiamonds Are Forever: A UCSB professor’s research examines 13,000-year-old nanodiamonds from multiple locations across three continents August 27th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

Announcements

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE