Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Helium atoms may light way for new imaging approach

University of Oregon professor suggests an atom camera

Helium atoms sent by nozzle may light way for new imaging approach

Eugene, OR | Posted on July 26, 2006

A newly devised nozzle fitted with a pinhole-sized capillary has allowed researchers to distribute helium atoms with X-ray-like waves on randomly shaped surfaces. The technique could power the development of a new microscope for nanotechnology, allowing for a non-invasive, high-resolution approach to studying both organic and inorganic materials.

All that is needed is a camera-like detector, which is now being pursued, to quickly capture images that offer nanometer resolution, said principal investigator Stephen Kevan, a physics professor at the University of Oregon. If successful, he said, the approach would build on advances already achieved with emerging X-ray-diffraction techniques. Reporting in the July 7 issue of Physical Review Letters, Kevan's four-member team described how they sent continuous beams of helium atoms and hydrogen molecules precisely onto material with irregular surfaces and measured the speckle diffraction pattern as the wave-like atoms scattered from the surface.

The research, funded by the National Science Foundation and U.S. Department of Education, was the first to capture speckle diffraction patterns using atomic de Broglie waves. The Nobel Prize in physics went to France's Louis de Broglie in 1929 for his work on the properties of matter waves.

"The approach of using the wave nature of atoms goes back 100 years to the founding of quantum mechanics," Kevan said. "Our goal is to make atomic de Broglie waves that have very smooth wave fronts, as in the case in laser light. Usually atom sources do not provide wave fronts that are aligned coherently, or nice and orderly."

The nozzle used in the experiments is similar to one on a garden hose. However, it utilizes a micron-sized glass capillary, borrowed from patch-clamp technology used in neuroscience. The capillary, smaller than a human hair, provides very small but bright-source atoms that can then be scattered from a surface. This distribution of scattered atoms is measured with high resolution using a field ionization detector.

The helium atoms advance with de Broglie wavelengths similar to X-rays, but are neutral and non-damaging to the surface involved. Kevan's team was able to measure single-slit diffraction patterns as well as speckle patterns made on an irregularly shaped object.

Getting a timely image remains the big obstacle, Kevan said. Images of diffraction patterns produced pixel-by-pixel in the study required hours to accumulate and suffer from thermal stability limitations of the equipment. "We'd like to measure the speckle diffraction patterns in seconds, not a day," he said.

"Given its simplicity, relative low cost, continuous availability, and the unit probability for helium scattering from surfaces, our source will be very competitive in some applications," Kevan and colleagues wrote.

"This atom optical experiment would benefit from developing an 'atom camera,' that would measure the entire speckle pattern in one exposure," they wrote.

Co-authors of the study with Kevan were doctoral students Forest S. Patton and Daniel P. Deponte, both of the department of physics at the University of Oregon, and Greg S. Elliott, a physicist at the University of Puget Sound in Tacoma, Wash.

Source: Stephen Kevan, professor of physics, 541-346-4742,


Jim Barlow

Copyright © University of Oregon

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Nanoantenna lighting-rod effect produces fast optical switches October 24th, 2016

New nanomedicine approach aims to improve HIV drug therapies October 24th, 2016

Unusual quantum liquid on crystal surface could inspire future electronics October 22nd, 2016

Nanosciences: Genes on the rack October 21st, 2016


Nanoantenna lighting-rod effect produces fast optical switches October 24th, 2016

New nanomedicine approach aims to improve HIV drug therapies October 24th, 2016

New method increases energy density in lithium batteries: Novel technique may lead to longer battery life in portable electronics and electrical vehicles October 24th, 2016

KaSAM-2016: International Conference on Material Sciences has successfully concluded in Pokhara of Western Nepal October 24th, 2016


Nanosciences: Genes on the rack October 21st, 2016

Smashing metallic cubes toughens them up: Rice University scientists fire micro-cubes at target to change their nanoscale structures October 20th, 2016

EM Resolutions announce the availability of Kleindiek Nanotechnik’s new cryo microgripper for cryo-FIB lift-out October 18th, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project