Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Precious metal gets picky

Abstract:
Gold nanoparticles adhere to only certain faces of crystals of the amino acid cystine

Precious metal gets picky

Posted on July 14, 2006

Not only jewelry-loving ladies but also scientists and technologists are fascinated by gold–particularly in the form of the smallest clumps imaginable. Gold nanoparticles stand out through their unique optical, electronic, and catalytic properties and are the ideal "building blocks" for nanostructures. Composite materials with a one or two-dimensional arrangement of the gold nanoparticles are especially interesting for the construction of components on the nanoscale.

Japanese scientists have now shown that crystals of organic compounds are the ideal partner for such gold composite materials. Gold nanoparticles do not colonize all the surfaces of the organic crystal evenly, they are choosy, and occupy only certain faces. The researchers working with Seiji Shinkai and Kazuki Sada employ millimeter-sized single crystals of the amino acid L-cystine. A single crystal is composed of a single, uniform crystal lattice. Cystine crystallizes in the form of hexagonal prisms. Such a crystal has two parallel hexagonal surfaces the edges of which are linked together by six rectangular faces. If the transparent crystal is immersed for two hours in a solution of gold nanoparticles it becomes purple. Under the microscope it can be seen that only the two hexagonal faces are purple. The sides, that is, the rectangular faces remain colorless. The purple coloration arises from deposited gold nanoparticles. Clearly the tiny gold particles are choosy and populate exclusively the hexagonal faces of the prism.

Why? The cystine molecules are arranged in layers in the crystal, these layers are parallel to the hexagonal faces. The layers are held together by a two-dimensional network of hydrogen bonds that run between the amino and the acid groups of the amino acid. These polar groups lie on the surface of the two hexagonal faces and attract the gold particles by electrostatic interactions. The rectangular faces, however, are made up of alternating layers of polar and nonpolar groups. The density of attractive polar groups here is too low to draw the gold particles onto these faces.

The face-selective coverage also works with microscale crystals. The gold coating could be used, for example, to selectively bind other materials. Through the attractive and repulsive forces between coated and uncoated faces of the crystals it should be possible to make the crystals stack in a direction-dependent manner and so form defined aggregate structures in a targeted fashion.

####


Author: Kazuki Sada, Kyushu University, Fukuoka (Japan), www.cstm.kyushu-u.ac.jp/shinkai/101/sada_H.htm

Title: Anisotropic Decoration of Gold Nanoparticles onto Specific Crystal Faces of Organic Single Crystals

Angewandte Chemie International Edition, 2006, 45, No. 29, 4764–4767, doi: 10.1002/anie.200601470

Contact:
Editorial office:
angewandte@wiley-vch.de

or David Greenberg (US)
dgreenbe@wiley.com

or Julia Lampam (UK)
jlampam@wiley.co.uk

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Leti Develops Proof of Concept to Test Wireless Systems in Aircraft: Will Present Results of Joint Project at AeroTech Conference And Exhibition in Fort Worth, Texas, Sept. 26-28 September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

Materials/Metamaterials

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

New insights into nanocrystal growth in liquid: Understanding process that creates complex crystals important for energy applications September 14th, 2017

Corrosion in real time: UCSB researchers get a nanoscale glimpse of crevice and pitting corrosion as it happens September 14th, 2017

Announcements

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Leti Develops Proof of Concept to Test Wireless Systems in Aircraft: Will Present Results of Joint Project at AeroTech Conference And Exhibition in Fort Worth, Texas, Sept. 26-28 September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project