Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Precious metal gets picky

Abstract:
Gold nanoparticles adhere to only certain faces of crystals of the amino acid cystine

Precious metal gets picky

Posted on July 14, 2006

Not only jewelry-loving ladies but also scientists and technologists are fascinated by gold–particularly in the form of the smallest clumps imaginable. Gold nanoparticles stand out through their unique optical, electronic, and catalytic properties and are the ideal "building blocks" for nanostructures. Composite materials with a one or two-dimensional arrangement of the gold nanoparticles are especially interesting for the construction of components on the nanoscale.

Japanese scientists have now shown that crystals of organic compounds are the ideal partner for such gold composite materials. Gold nanoparticles do not colonize all the surfaces of the organic crystal evenly, they are choosy, and occupy only certain faces. The researchers working with Seiji Shinkai and Kazuki Sada employ millimeter-sized single crystals of the amino acid L-cystine. A single crystal is composed of a single, uniform crystal lattice. Cystine crystallizes in the form of hexagonal prisms. Such a crystal has two parallel hexagonal surfaces the edges of which are linked together by six rectangular faces. If the transparent crystal is immersed for two hours in a solution of gold nanoparticles it becomes purple. Under the microscope it can be seen that only the two hexagonal faces are purple. The sides, that is, the rectangular faces remain colorless. The purple coloration arises from deposited gold nanoparticles. Clearly the tiny gold particles are choosy and populate exclusively the hexagonal faces of the prism.

Why? The cystine molecules are arranged in layers in the crystal, these layers are parallel to the hexagonal faces. The layers are held together by a two-dimensional network of hydrogen bonds that run between the amino and the acid groups of the amino acid. These polar groups lie on the surface of the two hexagonal faces and attract the gold particles by electrostatic interactions. The rectangular faces, however, are made up of alternating layers of polar and nonpolar groups. The density of attractive polar groups here is too low to draw the gold particles onto these faces.

The face-selective coverage also works with microscale crystals. The gold coating could be used, for example, to selectively bind other materials. Through the attractive and repulsive forces between coated and uncoated faces of the crystals it should be possible to make the crystals stack in a direction-dependent manner and so form defined aggregate structures in a targeted fashion.

####


Author: Kazuki Sada, Kyushu University, Fukuoka (Japan), www.cstm.kyushu-u.ac.jp/shinkai/101/sada_H.htm

Title: Anisotropic Decoration of Gold Nanoparticles onto Specific Crystal Faces of Organic Single Crystals

Angewandte Chemie International Edition, 2006, 45, No. 29, 4764–4767, doi: 10.1002/anie.200601470

Contact:
Editorial office:
angewandte@wiley-vch.de

or David Greenberg (US)
dgreenbe@wiley.com

or Julia Lampam (UK)
jlampam@wiley.co.uk

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Smaller, faster, cheaper: A new type of modulator for the future of data transmission July 27th, 2015

Researchers predict material with record-setting melting point July 27th, 2015

Global Corrosion Resistant Nano Coatings Market To 2015: Acute Market Reports July 27th, 2015

Global Zinc oxide nanopowders Industry 2015: Acute Market Reports July 25th, 2015

Materials/Metamaterials

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Controlling phase changes in solids: Controlling phase changes in solids July 29th, 2015

Liquipel Debuts Eyesight-Saving ION-Glass Blue Light Protection for iPhones and Androids at RadioShack Stores Nationwide: Liquipel's Unique Protective Screen, Available at RadioShack, Cuts Harmful Blue Light Implicated in Macular Degeneration by 10x July 28th, 2015

Perfect Optical Properties in Production of Aluminum Oxide Colloid Nanoparticles July 28th, 2015

Announcements

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

Flexible Future of Point-of-Care Disease Diagnostic July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project