Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Polymeric micelles are compatible with high-throughput screening

HTS application of QBI Life Sciences’ PreserveX™ Polymeric Micelles could be major breakthrough in pharmaceutical research

Preliminary research shows Preservex™ polymeric micelles are compatible with high-throughput screening

Madison, WI | Posted on June 07, 2006

QBI Life Sciences, a leader in membrane protein research, announced today the results from initial screening of UGT1A1 that revealed the compatibility of PreserveX™ Polymeric Micelles with high-throughput screening assays. The announcement was made during a presentation by Olga Trubetskoy, a QBI Life Sciences Research Fellow, at the International Society for the Study of Xenobiotics (ISSX) European annual meeting in Manchester, England.

The study, conducted with a University of Wisconsin – Madison library of 352 compounds, showed that incorporation of UGT1A1 into PreserveX™ Polymeric Micelles stabilizes UGT, resulting in reduced background and an expanded assay dynamic range. Additionally, light scattering is minimized. Additional screenings are expected to take place later this year.

The data collected from high-throughput screening of UGTs provide a foundation for discovery of novel UGT substrates and inhibitors and for predicting drug metabolism, toxicity, drug-drug, and herbal-drug interactions during drug discovery and in clinical trials.

“The application of PreserveX™ Polymeric Micelles to high-throughput screening could prove to be a tremendous advance in pharmaceutical research,” said Ralph Kauten, CEO of QBI Life Sciences. “Our products have the potential to bring greater accuracy and efficiency to the screening process, which we believe will radically change the metrics of drug discovery.”

Until now membrane proteins have not been well understood because the extraction of membrane proteins from their natural environment can reduce stability and therefore activity, making screening for biological responses problematic.

QBI Life Sciences’ line of PreserveX™ Polymeric Micelles gives researchers the ability to isolate, stabilize, and preserve activity of the membrane proteins which can lead to better drug discovery techniques, more accurate results and more efficiency in the screening process. QBI Life Sciences has developed valuable drug discovery tools including these membrane protein stabilizing reagents, as well as surface coatings for membrane proteins and optimal media for cell-surface proteins.

QBI Life Sciences, a division of Quintessence Biosciences, Inc., is the first and only company offering polymeric micelle solutions to study membrane proteins.

The work resulting in this discovery is being funded under a grant from the National Institutes of Health (NIH) under the NIH’s Roadmap for Medical Research.

For more information about PreserveX™ Polymeric Micelles or to learn more about QBI Life Sciences, log on to


Ralph Kauten
(608) 441-2950

Copyright © QBI Life Sciences

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press


New nanomedicine approach aims to improve HIV drug therapies October 24th, 2016

Nanosciences: Genes on the rack October 21st, 2016

Nanoparticle vaccinates mice against dengue fever October 21st, 2016

Tiny gold particles could be the key to developing a treatment for pancreatic cancer October 19th, 2016


KaSAM-2016: International Conference on Material Sciences has successfully concluded in Pokhara of Western Nepal October 24th, 2016

Move over, solar: The next big renewable energy source could be at our feet October 20th, 2016

Smashing metallic cubes toughens them up: Rice University scientists fire micro-cubes at target to change their nanoscale structures October 20th, 2016

Study explains strength gap between graphene, carbon fiber: Rice University researchers simulate defects in popular fiber, suggest ways to improve it October 19th, 2016


Nanoantenna lighting-rod effect produces fast optical switches October 24th, 2016

New nanomedicine approach aims to improve HIV drug therapies October 24th, 2016

New method increases energy density in lithium batteries: Novel technique may lead to longer battery life in portable electronics and electrical vehicles October 24th, 2016

KaSAM-2016: International Conference on Material Sciences has successfully concluded in Pokhara of Western Nepal October 24th, 2016

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project