Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > ATDF & UT Launch Advanced Processing and Prototyping Center

ATDF & UT Launch Advanced Processing and Prototyping Center to Help Bring Nanoelectronics to the Marketplace

Sematech

Austin, TX | May 15, 2006

ATDF, a wholly owned subsidiary of SEMATEECH, and The University of Texas at Austin (UT), have joined forces to create the Advanced Processing and Prototyping Center (AP2C), a highly specialized R&D program designed to speed leading-edge nanoelectronic technology to the marketplace.

The AP2C combines UT's world-class research with ATDF's leading-edge processing and SEMATECH's industry know-how, and builds on Texas' established reputation as a leader in the electronics industry. Funded with an approximately $5 million grant from the Defense Advanced Research Projects Agency (DARPA), the AP2C will investigate a wide range of revolutionary devices and materials which incorporate advanced microchip manufacturing technologies.

"The AP2C fits in well with the plans of Governor Perry and the UT System to develop a state and federal partnership for advancing nanotechnology in Texas," said Robert Barnhill, UT System vice-chancellor for Research and Technology Transfer.

Added Sanjay Banerjee, director of the UT Microelectronics Research Center and lead university researcher for the AP2C: "This new center is an excellent way to encourage promising research ideas, develop them, and then accelerate the best ones to quicken the pace of technology."

"Continuous advancements in leading edge and emerging technology areas are critical for future generations of the even more intense information-processing and storage needed to enable personalized medicine, on-demand entertainment, fully virtualized retail commerce, and the most sophisticated military and homeland security systems," said Dave Anderson, ATDF general manager.

The AP2C will be distributed physically within existing offices and labs at UT Austin, UT Dallas, SEMATECH, and ATDF. It will involve the efforts of approximately 200 professors, graduate students, engineers, and manufacturing technicians, significantly leveraging the regional nanoelectronics research infrastructure.

"With the AP2C, we have added another dynamic and innovative R&D resource to our portfolio of leading-edge development," said Anderson. "Here we can develop and test the new materials and innovative device structures and processing methods that will enable the electronics industry to accelerate, as well as drive the spillover benefits into other industries, such as biotechnology and energy."

The AP2C will help enable R&D for many new technologies and products, including:

  • Development and evaluation of nanoimprint technology, a revolutionary approach that could dramatically lower the cost of producing nanotechnology products, including electronic and biomedical devices
  • Techniques needed to build "electronic noses," devices that have the ability to sense harmful chemicals, spoiled food, and illegal drugs
  • New types of computer chips made of novel materials and structures, enabling faster communications devices that generate less heat and need less power to operate
  • Advances in electron microscopes for the measurements required to develop next-­generation nano-manufacturing tools and processes

AP2C Technical Details

The AP2C will complement work begun in 2004 at the Advanced Materials Research Center (AMRC), a state-funded, cooperative program between SEMATECH and Texas universities. ATDF, a leading advanced nanoscale manufacturing research facility, will offer accelerated production assessments of the most promising experimental devices and structures emerging from AP2C university projects.

Overall, AP2C projects will involve use of nanowires, silicon-germanium-carbon structures, imprint lithography, and substrates composed of high-mobility compound semiconductors bonded with silicon for advanced complementary metal oxide semiconductor (CMOS) technology. Other targeted technologies will include directed self-assembly for patterning, hybrid composite materials, spintronics memory, quantum transport and optical interconnects.

Specific AP2C projects initially will include:

  • Fabrication of nanoscale field-effect transistors (FETs) composed of germanium nanowires
  • Incorporation of carbon in silicon and germanium substrates to enable III-V compound semiconductors to be incorporated in semiconductor devices on a silicon wafer
  • Step-and-flash imprint lithography, a revolutionary technology which uses a mold-like template to "stamp" extremely small structures into microchips or other nanotechnology or biotechnology devices
  • Circuit patterning through directed self-assembly, an experimental way of "growing" circuit patterns directly on a chip
  • Quantum transport, based on quantum mechanics to model the movement of electrons through nanoelectronics device switches
  • Optical interconnects, involving the use of lasers instead of copper or other metals to connect devices on a chip

"AP2C will help define the future shape of nanoelectronics, and will allow our industry and other industries that have traditionally benefited from advancements in smaller, faster, innovative chip manufacturing capabilities, to continue accelerating forward," said Randy Goodall, director of External Programs for SEMATECH. "The resulting productivity in research, manufacturing, business and personal life will, in turn, benefit the industries and careers of the future ­ keeping Texas inn the race for leadership in technology innovation."

####

About ATDF:
ATDF, a wholly owned subsidiary of SEMATECH, is a leading technology R&D center where research meets manufacturing for semiconductor manufacturers, equipment and materials suppliers, and others. ATDF customers can confidentially test new designs, integration methodologies, and prototype systems while protecting their own intellectual property, and development partners can work closely with one another in a custom manufacturing environment. ATDF also develops baseline processes, accepted industry-wide, that bring new tools and materials to manufacturing faster, at lower cost.

For more information, please visit www.atdf.com

About UMC:
The University of Texas College of Engineering ranks among the top ten engineering schools in the United States. With the nation's third highest percentage of faculty elected members of the National Academy of Engineering, the College's 6,500 students gain exposure to the nation's finest engineering practitioners.

Appropriately, the College's logo, an embellished checkmark used by the first UT engineering dean to denote high quality student work, is the nation's oldest quality symbol.

For more information, please visit www.engr.utexas.edu/

SEMATECH Contact:
Dan McGowan
512-356-3440
dan.mcgowan@sematech.org

UT Engineering Contact:
Becky Rische
brische@mail.utexas.edu
512-471-7272

Copyright © SEMATECH

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Chip Technology

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

Fonon Announces 3D Metal Sintering Technology: Emerging Additive Nano Powder Manufacturing Technology August 28th, 2014

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

Nanoelectronics

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

Announcements

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Tools

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

Ultra-Low Frequency Vibration Isolation Stabilizes Scanning Tunneling Microscopy at UCLA’s Nano-Research Group August 28th, 2014

Measure Both Elastic and Viscous Properties with AFM Using Asylum Research’s Exclusive AM-FM Viscoelastic Mapping Mode August 28th, 2014

Malvern specialists to deliver inaugural short course on polymer characterization at Interplas 2014 August 27th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE