Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > ATDF & UT Launch Advanced Processing and Prototyping Center

ATDF & UT Launch Advanced Processing and Prototyping Center to Help Bring Nanoelectronics to the Marketplace

Sematech

Austin, TX | May 15, 2006

ATDF, a wholly owned subsidiary of SEMATEECH, and The University of Texas at Austin (UT), have joined forces to create the Advanced Processing and Prototyping Center (AP2C), a highly specialized R&D program designed to speed leading-edge nanoelectronic technology to the marketplace.

The AP2C combines UT's world-class research with ATDF's leading-edge processing and SEMATECH's industry know-how, and builds on Texas' established reputation as a leader in the electronics industry. Funded with an approximately $5 million grant from the Defense Advanced Research Projects Agency (DARPA), the AP2C will investigate a wide range of revolutionary devices and materials which incorporate advanced microchip manufacturing technologies.

"The AP2C fits in well with the plans of Governor Perry and the UT System to develop a state and federal partnership for advancing nanotechnology in Texas," said Robert Barnhill, UT System vice-chancellor for Research and Technology Transfer.

Added Sanjay Banerjee, director of the UT Microelectronics Research Center and lead university researcher for the AP2C: "This new center is an excellent way to encourage promising research ideas, develop them, and then accelerate the best ones to quicken the pace of technology."

"Continuous advancements in leading edge and emerging technology areas are critical for future generations of the even more intense information-processing and storage needed to enable personalized medicine, on-demand entertainment, fully virtualized retail commerce, and the most sophisticated military and homeland security systems," said Dave Anderson, ATDF general manager.

The AP2C will be distributed physically within existing offices and labs at UT Austin, UT Dallas, SEMATECH, and ATDF. It will involve the efforts of approximately 200 professors, graduate students, engineers, and manufacturing technicians, significantly leveraging the regional nanoelectronics research infrastructure.

"With the AP2C, we have added another dynamic and innovative R&D resource to our portfolio of leading-edge development," said Anderson. "Here we can develop and test the new materials and innovative device structures and processing methods that will enable the electronics industry to accelerate, as well as drive the spillover benefits into other industries, such as biotechnology and energy."

The AP2C will help enable R&D for many new technologies and products, including:

  • Development and evaluation of nanoimprint technology, a revolutionary approach that could dramatically lower the cost of producing nanotechnology products, including electronic and biomedical devices
  • Techniques needed to build "electronic noses," devices that have the ability to sense harmful chemicals, spoiled food, and illegal drugs
  • New types of computer chips made of novel materials and structures, enabling faster communications devices that generate less heat and need less power to operate
  • Advances in electron microscopes for the measurements required to develop next-­generation nano-manufacturing tools and processes

AP2C Technical Details

The AP2C will complement work begun in 2004 at the Advanced Materials Research Center (AMRC), a state-funded, cooperative program between SEMATECH and Texas universities. ATDF, a leading advanced nanoscale manufacturing research facility, will offer accelerated production assessments of the most promising experimental devices and structures emerging from AP2C university projects.

Overall, AP2C projects will involve use of nanowires, silicon-germanium-carbon structures, imprint lithography, and substrates composed of high-mobility compound semiconductors bonded with silicon for advanced complementary metal oxide semiconductor (CMOS) technology. Other targeted technologies will include directed self-assembly for patterning, hybrid composite materials, spintronics memory, quantum transport and optical interconnects.

Specific AP2C projects initially will include:

  • Fabrication of nanoscale field-effect transistors (FETs) composed of germanium nanowires
  • Incorporation of carbon in silicon and germanium substrates to enable III-V compound semiconductors to be incorporated in semiconductor devices on a silicon wafer
  • Step-and-flash imprint lithography, a revolutionary technology which uses a mold-like template to "stamp" extremely small structures into microchips or other nanotechnology or biotechnology devices
  • Circuit patterning through directed self-assembly, an experimental way of "growing" circuit patterns directly on a chip
  • Quantum transport, based on quantum mechanics to model the movement of electrons through nanoelectronics device switches
  • Optical interconnects, involving the use of lasers instead of copper or other metals to connect devices on a chip

"AP2C will help define the future shape of nanoelectronics, and will allow our industry and other industries that have traditionally benefited from advancements in smaller, faster, innovative chip manufacturing capabilities, to continue accelerating forward," said Randy Goodall, director of External Programs for SEMATECH. "The resulting productivity in research, manufacturing, business and personal life will, in turn, benefit the industries and careers of the future ­ keeping Texas inn the race for leadership in technology innovation."

####

About ATDF:
ATDF, a wholly owned subsidiary of SEMATECH, is a leading technology R&D center where research meets manufacturing for semiconductor manufacturers, equipment and materials suppliers, and others. ATDF customers can confidentially test new designs, integration methodologies, and prototype systems while protecting their own intellectual property, and development partners can work closely with one another in a custom manufacturing environment. ATDF also develops baseline processes, accepted industry-wide, that bring new tools and materials to manufacturing faster, at lower cost.

For more information, please visit www.atdf.com

About UMC:
The University of Texas College of Engineering ranks among the top ten engineering schools in the United States. With the nation's third highest percentage of faculty elected members of the National Academy of Engineering, the College's 6,500 students gain exposure to the nation's finest engineering practitioners.

Appropriately, the College's logo, an embellished checkmark used by the first UT engineering dean to denote high quality student work, is the nation's oldest quality symbol.

For more information, please visit www.engr.utexas.edu/

SEMATECH Contact:
Dan McGowan
512-356-3440
dan.mcgowan@sematech.org

UT Engineering Contact:
Becky Rische
brische@mail.utexas.edu
512-471-7272

Copyright © SEMATECH

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

'Nanoemulsion' gels offer new way to deliver drugs through the skin: Novel materials made with FDA-approved components could deliver large payloads of active ingredients June 21st, 2019

Next-gen solar cells spin in new direction: Phosphorene shows efficiency promise June 21st, 2019

Researchers report new understanding of thermoelectric materials: Discovery leads to promising new materials for converting waste heat to power June 21st, 2019

Millions with neurological diseases could find new option in implantable neurostimulation devices June 21st, 2019

Chip Technology

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

Mysterious Majorana quasiparticle is now closer to being controlled for quantum computing: Princeton researchers detect a robust Majorana quasiparticle and show how it can be turned on and off June 14th, 2019

Small currents for big gains in spintronics: A new low-power magnetic switching component could aid spintronic devices June 14th, 2019

Nanoelectronics

Beyond 1 and 0: Engineers boost potential for creating successor to shrinking transistors May 30th, 2019

Laser technique could unlock use of tough material for next-generation electronics: Researchers make graphene tunable, opening up its band gap to a record 2.1 electronvolts May 30th, 2019

From 2D to 1D: Atomically quasi '1D' wires using a carbon nanotube template: New bulk synthesis method for nanowires of molybdenum telluride for nanoelectronics April 19th, 2019

2D borophene gets a closer look: Rice, Northwestern find new ways to image, characterize unique material April 11th, 2019

Announcements

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) June 22nd, 2019

Ice lithography: opportunities and challenges in 3D nanofabrication June 21st, 2019

Researchers report new understanding of thermoelectric materials: Discovery leads to promising new materials for converting waste heat to power June 21st, 2019

Millions with neurological diseases could find new option in implantable neurostimulation devices June 21st, 2019

Tools

Millions with neurological diseases could find new option in implantable neurostimulation devices June 21st, 2019

University of Aberdeen use the Deben CT5000 to observe compressive damage mechanisms in syntactic foam June 14th, 2019

2D crystals conforming to 3D curves create strain for engineering quantum devices June 7th, 2019

nPoint piezo driven nanopositioning flexure stages now available from Elliot Scientific June 4th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project